Weighted inequalities for real-analytic functions in ℝ2

被引:0
|
作者
Malabika Pramanik
机构
[1] University of Wisconsin-Madison,Department of Mathematics
来源
关键词
42B10; 35S30; 41A60; harmonic analysis; weighted integrals; weighted inequalities; weights; real-analytic functions;
D O I
暂无
中图分类号
学科分类号
摘要
Let ƒ and g be real-analytic functions near the origin in ℝ2. Given 1 < p < ∞, we obtain a characterization of the set of positive numbers ∈ and δ that ensures\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{{|g|^\varepsilon }}{{|f|^\delta }} \in A_p (K)$$ \end{document} for some small neighborhood K of the origin. A notion of stability is introduced in relation to Ap weights and a counterexample is presented to show that the two-dimensional weighted problem, unlike its analog in dimension one, is not stable.
引用
收藏
页码:265 / 288
页数:23
相关论文
共 50 条