Understanding mathematics of Grover’s algorithm

被引:0
|
作者
Paweł J. Szabłowski
机构
[1] Warsaw University of Technology,Emeritus in Department of Mathematics and Information Sciences
来源
关键词
Quantum computation; Grover’s algorithm; Unitary operations; Primary 68Q12; 15A04; Secondary 81P68; 15B10;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the mathematical structure of the classical Grover’s algorithm and put it within the framework of linear algebra over the complex numbers. We also generalize it in the sense, that we are seeking not the one ‘chosen’ element (sometimes called a ‘solution’) of the dataset, but a set of m such ‘chosen’ elements (out of n>m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>m)$$\end{document}. Besides, we do not assume that the so-called initial superposition is uniform. We assume also that we have at our disposal an oracle that ‘marks,’ by a suitable phase change φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}, all these ‘chosen’ elements. In the first part of the paper, we construct a unique unitary operator that selects all ‘chosen’ elements in one step. The constructed operator is uniquely defined by the numbers φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} which is a certain function of the coefficients of the initial superposition. Moreover, it is in the form of a composition of two so-called reflections. The result is purely theoretical since the phase change required to reach this heavily depends on α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. In the second part, we construct unitary operators having a form of composition of two or more reflections (generalizing the constructed operator) given the set of orthogonal versors. We find properties of these operations, in particular, their compositions. Further, by considering a fixed, ‘convenient’ phase change φ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi ,$$\end{document} and by sequentially applying the so-constructed operator, we find the number of steps to find these ‘chosen’ elements with great probability. We apply this knowledge to study the generalizations of Grover’s algorithm (m=1,ϕ=π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=1,\phi =\pi $$\end{document}), which are of the form, the found previously, unitary operators.
引用
收藏
相关论文
共 50 条
  • [1] Understanding mathematics of Grover's algorithm
    Szablowski, Pawel J.
    [J]. QUANTUM INFORMATION PROCESSING, 2021, 20 (05)
  • [2] UNDERSTANDING GROVER'S SEARCH ALGORITHM THROUGH A SIMPLE CASE OF STUDY
    Orts, F.
    Ortega, G.
    Cruz, N. C.
    Garzon, E. M.
    [J]. EDULEARN19: 11TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES, 2019, : 1730 - 1737
  • [3] Distributed Grover's algorithm
    Qiu, Daowen
    Luo, Le
    Xiao, Ligang
    [J]. THEORETICAL COMPUTER SCIENCE, 2024, 993
  • [4] Optimization of Grover's search algorithm
    Garg, Varun
    Pande, Anupama
    [J]. WORLD CONGRESS ON ENGINEERING 2008, VOLS I-II, 2008, : 288 - 292
  • [5] Distributed exact Grover's algorithm
    Zhou, Xu
    Qiu, Daowen
    Luo, Le
    [J]. FRONTIERS OF PHYSICS, 2023, 18 (05)
  • [6] Grover's algorithm on a Feynman computer
    de Falco, D
    Tamascelli, D
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (03): : 909 - 930
  • [7] Phase Matching in Grover's Algorithm
    Li Xin
    Song Kaoping
    Sun Ning
    Zhao Chunli
    [J]. 2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 7939 - 7942
  • [8] Two Improvements in Grover's Algorithm
    Kang, Kai
    [J]. 2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1179 - 1182
  • [9] Grover's algorithm and the secant varieties
    Holweck, Frederic
    Jaffali, Hamza
    Nounouh, Ismael
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (11) : 4391 - 4413
  • [10] Synthesis of Ternary Grover's Algorithm
    Mandal, Sudhindu Bikash
    Chakrabarti, Amlan
    Sur-Kolay, Susmita
    [J]. 2014 IEEE 44TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2014), 2014, : 184 - 189