The global structure of traveling waves in spatially discrete dynamical systems

被引:213
|
作者
Mallet-Paret J. [1 ]
机构
[1] Division of Applied Mathematics, Brown University, Providence
基金
美国国家科学基金会;
关键词
Continuation methods; Heteroclinic orbits; Lattice differential equations; Lin's method; Mel'nikov method; Spatially discrete systems; Traveling waves;
D O I
10.1023/A:1021841618074
中图分类号
学科分类号
摘要
We obtain existence of traveling wave solutions for a class of spatially discrete systems, namely, lattice differential equations. Uniqueness of the wave speed c, and uniqueness of the solution with c ≠ 0, are also shown. More generally, the global structure of the set of all traveling wave solutions is shown to be a smooth manifold where c ≠ 0. Convergence results for solutions are obtained at the singular perturbation limit c → 0. © 1999 Plenum Publishing Corporation.
引用
收藏
页码:49 / 127
页数:78
相关论文
共 50 条
  • [1] GLOBAL STABILITY OF TRAVELING WAVES FOR A SPATIALLY DISCRETE DIFFUSION SYSTEM WITH TIME DELAY
    Liu, Ting
    ZHANG, GUO-BAO
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (04): : 2599 - 2618
  • [2] Traveling waves in lattice dynamical systems
    Chow, SN
    Mallet-Paret, J
    Shen, WX
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 149 (02) : 248 - 291
  • [3] TRAVELING WAVES FOR SPATIALLY DISCRETE SYSTEMS OF FITZHUGH-NAGUMO TYPE WITH PERIODIC COEFFICIENTS
    Schouten-Straatman, Willem M.
    Hupkes, Hermen Jan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (04) : 3492 - 3532
  • [4] Spiral waves in spatially discrete λ-ω systems
    Paullet, JE
    Ermentrout, GB
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (01): : 33 - 40
  • [5] Existence of monotonic traveling waves in lattice dynamical systems
    Hsu, CH
    Yang, SY
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (08): : 2375 - 2394
  • [6] Global stability of discrete dynamical systems
    Jin, MZ
    Ying, D
    Li, CX
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2002, : 1220 - 1223
  • [7] Dynamical systems and traveling waves in almost periodic structures
    Shen, WX
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (02) : 493 - 548
  • [8] Traveling waves, propagation failure, and anisotropy for spatially discrete reaction diffusion equations
    VanVleck, ES
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 3, 1996, : 96 - 99
  • [9] Computation of traveling waves for spatially discrete bistable reaction-diffusion equations
    Elmer, CE
    VanVleck, ES
    APPLIED NUMERICAL MATHEMATICS, 1996, 20 (1-2) : 157 - 169
  • [10] Traveling waves in one-dimensional networks of dynamical systems
    Paoletti, Paolo
    Innocenti, Giacomo
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 5043 - 5048