General form of α-resolution principle for linguistic truth-valued lattice-valued logic

被引:0
|
作者
Xiaomei Zhong
Yang Xu
Jun Liu
Shuwei Chen
机构
[1] Southwest Jiaotong University,School of Mathematics
[2] University of Ulster,School of Computing and Mathematics
[3] Zhengzhou University,School of Electrical Engineering
来源
Soft Computing | 2012年 / 16卷
关键词
General form of ; -resolution principle; Resolution-based automated reasoning; Linguistic truth-valued lattice-valued logic; Linguistic truth-valued lattice implication algebra;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is focused on resolution-based automated reasoning theory in linguistic truth-valued lattice-valued logic based on linguistic truth-valued lattice implication algebra. Concretely, the general form of α-resolution principle based on the above lattice-valued logic is equivalently transformed into another simpler lattice-valued logic system. Firstly, the general form of α-resolution principle for lattice-valued propositional logic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ({\fancyscript{L}}_{n} \times {\fancyscript{L}}_{2}){\text{P(X)}} $$\end{document} is equivalently transformed into that for lattice-valued propositional logic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \fancyscript{L}_{n} $$\end{document}P(X). A similar conclusion is obtained between the general form of α-resolution principle for linguistic truth-valued lattice-valued propositional logic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{L}}_{V(n \times 2)}$$\end{document}P(X) and that for lattice-valued propositional logic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{L}}_{Vn} $$\end{document}P(X). Secondly, the general form of α-resolution principle for lattice-valued first-order logic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ({\fancyscript{L}}_{n} \times {\fancyscript{L}}_{2}) $$\end{document}F(X) is equivalently transformed into that for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{L}}_{n} $$\end{document}P(X). Similarly, this conclusion also holds for linguistic truth-valued lattice-valued first-order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{L}}_{V(n \times 2)} $$\end{document}F(X) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{L}}_{Vn} $$\end{document}P(X). The presented work provides a key theoretical support for automated reasoning approaches and algorithms in linguistic truth-valued logic, which can further support linguistic information processing for decision making, i.e., reasoning with words.
引用
收藏
页码:1767 / 1781
页数:14
相关论文
共 50 条
  • [1] General form of α-resolution principle for linguistic truth-valued lattice-valued logic
    Zhong, Xiaomei
    Xu, Yang
    Liu, Jun
    Chen, Shuwei
    [J]. SOFT COMPUTING, 2012, 16 (10) : 1767 - 1781
  • [2] α-Generalized lock resolution method in linguistic truth-valued lattice-valued logic
    He, Xingxing
    Xu, Yang
    Liu, Jun
    Chen, Shuwei
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2012, 5 (06): : 1120 - 1134
  • [3] α-Generalized lock resolution method in linguistic truth-valued lattice-valued logic
    Xingxing He
    Yang Xu
    Jun Liu
    Shuwei Chen
    [J]. International Journal of Computational Intelligence Systems, 2012, 5 : 1120 - 1134
  • [4] On compatibilities of α-lock resolution method in linguistic truth-valued lattice-valued logic
    He, Xingxing
    Xu, Yang
    Liu, Jun
    Chen, Shuwei
    [J]. SOFT COMPUTING, 2012, 16 (04) : 699 - 709
  • [5] On compatibilities of α-lock resolution method in linguistic truth-valued lattice-valued logic
    Xingxing He
    Yang Xu
    Jun Liu
    Shuwei Chen
    [J]. Soft Computing, 2012, 16 : 699 - 709
  • [6] On an algebra of linguistic truth-valued intuitionistic lattice-valued logic
    Zou, Li
    Shi, Peng
    Pei, Zheng
    Xu, Yang
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2013, 24 (03) : 447 - 456
  • [7] Linguistic truth-valued concept lattice based on lattice-valued logic
    Yang, Li
    Xu, Yang
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE 2007), 2007,
  • [8] Linguistic truth-valued lattice-valued propositional logic system lP(X) based on linguistic truth-valued lattice implication algebra
    Lai, Jiajun
    Xu, Yang
    [J]. INFORMATION SCIENCES, 2010, 180 (10) : 1990 - 2002
  • [9] α-generalized Resolution Method Based on Linguistic Truth-valued Lattice-valued Propositional Logic System
    Xu, Weitao
    [J]. 2017 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (IEEE ISKE), 2017,
  • [10] A linguistic truth-valued uncertainty reasoning model based on lattice-valued logic
    Chen, SW
    Xu, Y
    Ma, J
    [J]. FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 1, PROCEEDINGS, 2005, 3613 : 276 - 284