Engel elements in some fractal groups

被引:0
|
作者
Gustavo A. Fernández-Alcober
Albert Garreta
Marialaura Noce
机构
[1] University of the Basque Country,Department of Mathematics
[2] Università di Salerno,Dipartimento di Matematica
来源
关键词
Fractal group; Engel element; Basilica group; GGS group; Lamplighter group; 20E08; 20F45;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a prime and let G be a subgroup of a Sylow pro-p subgroup of the group of automorphisms of the p-adic tree. We prove that if G is fractal and |G′:stG(1)′|=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|G':{{\mathrm{st}}}_G(1)'|=\infty $$\end{document}, then the set L(G) of left Engel elements of G is trivial. This result applies to fractal nonabelian groups with torsion-free abelianization, for example the Basilica group, the Brunner–Sidki–Vieira group, and also to the GGS-group with constant defining vector. We further provide two examples showing that neither of the requirements |G′:stG(1)′|=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|G':{{\mathrm{st}}}_G(1)'|=\infty $$\end{document} and being fractal can be dropped.
引用
收藏
页码:651 / 660
页数:9
相关论文
共 50 条