Geodesics with constraints on Heisenberg manifolds

被引:0
|
作者
Ovidiu Calin
Vittorio Mangione
机构
[1] Eastern Michigan University,Mathematics Department
[2] Universitá degli Studi di Parma,undefined
关键词
Ricci; Riemann; curvature; geodesics; Levi-Civita connection; 37J60; 53B21; 70H03;
D O I
10.1007/BF03322912
中图分类号
学科分类号
摘要
We provide a qualitative description for the solutions of Euler-Lagrange equations associated to Lagrangians with linear and quadratic constraints. An important role is played by the natural metric induced by the Heisenberg manifold. In the second part we arrive at a formula which is the analog for the Gauss’ formula for the Heisenberg group.
引用
收藏
页码:44 / 53
页数:9
相关论文
共 50 条
  • [1] Periodic magnetic geodesics on Heisenberg manifolds
    Epstein, Jonathan
    Gornet, Ruth
    Mast, Maura B.
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2021, 60 (03) : 647 - 685
  • [2] Periodic magnetic geodesics on Heisenberg manifolds
    Jonathan Epstein
    Ruth Gornet
    Maura B. Mast
    [J]. Annals of Global Analysis and Geometry, 2021, 60 : 647 - 685
  • [3] Geodesics in Heisenberg Groups
    VALERY MARENICH
    [J]. Geometriae Dedicata, 1997, 66 : 175 - 185
  • [4] Geodesics in the Heisenberg Group
    Hajlasz, Piotr
    Zimmerman, Scott
    [J]. ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 325 - 337
  • [5] Geodesics in Heisenberg groups
    Marenich, V
    [J]. GEOMETRIAE DEDICATA, 1997, 66 (02) : 175 - 185
  • [6] Geodesics in conical manifolds
    Ghimenti, M
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2005, 25 (02) : 235 - 261
  • [7] Geodesics and the geometry of manifolds
    Hall, Graham
    [J]. BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2014, 19 (01): : 54 - 61
  • [8] GEODESICS AND NEAR-GEODESICS IN THE MANIFOLDS OF PROJECTOR FRAMES
    KOVARIK, ZV
    SHERIF, N
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 99 : 259 - 277
  • [9] GEODESICS ON PRODUCT LORENTZIAN MANIFOLDS
    GIANNONI, F
    MASIELLO, A
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1995, 12 (01): : 27 - 60
  • [10] On Closed Geodesics in Lorentz Manifolds
    Allout, S.
    Belkacem, A.
    Zeghib, A.
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2024, 34 (05) : 1297 - 1309