Primary 20E15;
Secondary 20F28;
Power automorphism;
maximal condition;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
An automorphism α of a group G is called a noetherian automorphism if for each ascending chain
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
X_1 < X_2 < \ldots < X_n < X_{n + 1} < \ldots
$$
\end{document} of subgroups of G there is a positive integer m such that
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_n^{\alpha} = X_n $$
\end{document} for all n ≥ m. The structure of the group of all noetherian automorphisms of a group is investigated in this paper.