The Funk and Hilbert geometries for spaces of constant curvature

被引:0
|
作者
Athanase Papadopoulos
Sumio Yamada
机构
[1] Université de Strasbourg and CNRS,Institut de Recherche Mathématique Avancée
[2] Gakushuin University,Department of Mathematics
来源
关键词
Hilbert metric; Funk metric; Constant curvature ; Non-Euclidean trigonometry; Cross ratio; Non-Euclidean geometry; Projective geometry; Minkowski space; Generalized Beltrami–Klein model; Primary 58B20; Secondary 53C60; 51A05; 51A05; 53A35;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of this paper is to introduce and to study analogues of the Euclidean Funk and Hilbert metrics on open convex subsets of the hyperbolic space Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb H ^n$$\end{document} and of the sphere Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^n$$\end{document}. We highlight some striking similarities among the three cases (Euclidean, spherical and hyperbolic) which hold at least at a formal level. The proofs of the basic properties of the classical Funk metric on subsets of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R ^n$$\end{document} use similarity properties of Euclidean triangles which of course do not hold in the non-Euclidean cases. Transforming the side lengths of triangles using hyperbolic and circular functions and using some non-Euclidean trigonometric formulae, the Euclidean similarity techniques are transported into the non-Euclidean worlds. We start by giving three representations of the Funk metric in each of the non-Euclidean cases, which parallel known representations for the Euclidean case. The non-Euclidean Funk metrics are shown to be Finslerian, and the associated Finsler norms are described. We then study their geodesics. The Hilbert geometry of convex sets in the non-Euclidean constant curvature spaces Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^n$$\end{document} and Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb H ^n$$\end{document} is then developed by using the properties of the Funk metric and by introducing a non-Euclidean cross ratio. In the case of Euclidean (respectively spherical, hyperbolic) geometry, the Euclidean (respectively spherical, hyperbolic) geodesics are Funk and Hilbert geodesics. This leads to a formulation and a discussion of Hilbert’s Problem IV in the non-Euclidean settings. Projection maps between the spaces Rn,Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R ^n, \mathbb H ^n$$\end{document} and the upper hemisphere establish equivalences between the Hilbert geometries of convex sets in the three spaces of constant curvature, but such an equivalence does not hold for Funk geometries.
引用
收藏
页码:97 / 120
页数:23
相关论文
共 50 条