In this paper, we have investigated the two-body decay of Bs0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B^0_s$$\end{document} meson into Ds∗-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$D^{*-}_s$$\end{document} and K∗+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K^{*+}$$\end{document} which is not observed yet. However, some similar decays, such as Bs0→Ds∗-ρ+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B^0_s\rightarrow D^{*-}_s\rho ^+$$\end{document} and Bs0→D¯∗0ϕ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B^0_s\rightarrow \bar{D}^{*0}\phi $$\end{document}, have been observed with numerical experimental branching ratios. To ensure our obtained results for Bs0→Ds∗-K∗+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B^0_s\rightarrow D^{*-}_sK^{*+}$$\end{document} decay, we have applied the used method on similar observed decays. The Bs0→Ds∗-K∗+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B^0_s\rightarrow D^{*-}_sK^{*+}$$\end{document} decay has been calculated using different methods in other literature works, and their results are comparable with the results of the current work. The most precise determinations for the branching fractions of Bs0→Ds∗-K+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B^0_s\rightarrow D^{*-}_sK^+$$\end{document} and Bs0→Ds∗-π+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B^0_s\rightarrow D^{*-}_s\pi ^+$$\end{document} decays have been reported by the LHCb and Belle collaborations with the values of B(Bs0→Ds∗-K+)=(1.63±0.12)×10-4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {B}}(B^0_s\rightarrow D^{*-}_sK^+)=(1.63\pm 0.12)\times 10^{-4}$$\end{document} and B(Bs0→Ds∗-π+)=(2.40±0.30)×10-3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {B}}(B^0_s\rightarrow D^{*-}_s\pi ^+)=(2.40\pm 0.30)\times 10^{-3}$$\end{document}, respectively. Therefore, we have also calculated the branch ratios of these decay modes and obtained the numerical results as B(Bs0→Ds∗-K+)=(1.68±0.17)×10-4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {B}}(B^0_s\rightarrow D^{*-}_sK^+)=(1.68\pm 0.17)\times 10^{-4}$$\end{document} and B(Bs0→Ds∗-π+)=(2.22±0.17)×10-3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {B}}(B^0_s\rightarrow D^{*-}_s\pi ^{+})=(2.22\pm 0.17)\times 10^{-3}$$\end{document}, that are much more consistent with the experimental results. The ratio of these, 0.076±0.014\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.076\pm 0.014$$\end{document}, is also in good agreement with the ratio reported by LHCb collaboration, 0.068±0.005\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.068\pm 0.005$$\end{document}.