Gauge Equivalence Between 1 + 1 Rational Calogero–Moser Field Theory and Higher Rank Landau–Lifshitz Equation

被引:0
|
作者
K. Atalikov
A. Zotov
机构
[1] Steklov Mathematical Institute,
[2] Russian Academy of Sciences,undefined
[3] National Research Center Kurchatov Institute,undefined
[4] National Research University Higher School of Economics,undefined
来源
JETP Letters | 2023年 / 117卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study 1 + 1 field generalization of the rational N-body Calogero–Moser model. We show that this model is gauge equivalent to some special higher rank matrix Landau–Lifshitz equation. The latter equation is described in terms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{G}}{{{\text{L}}}_{N}}$$\end{document} rational R-matrix, which turns into the 11-vertex R-matrix in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N = 2$$\end{document} case. The rational R-matrix satisfies the associative Yang–Baxter equation, which underlies construction of the Lax pair for the Zakharov–Shabat equation. The field analogue of the IRF-Vertex transformation is proposed. It allows to compute explicit change of variables between the field Calogero–Moser model and the Landau–Lifshitz equation.
引用
收藏
页码:630 / 634
页数:4
相关论文
共 22 条