Einstein Relation for Random Walk in a One-Dimensional Percolation Model

被引:0
|
作者
Nina Gantert
Matthias Meiners
Sebastian Müller
机构
[1] Technische Universität München,Fakultät für Mathematik
[2] Universität Innsbruck,Institut für Mathematik
[3] Aix Marseille Université,undefined
[4] CNRS,undefined
[5] Centrale Marseille,undefined
[6] I2M UMR 7373,undefined
来源
关键词
Einstein relation; Invariance principle; Ladder graph; Percolation; Random walk; 82B43; 60K37;
D O I
暂无
中图分类号
学科分类号
摘要
We consider random walks on the infinite cluster of a conditional bond percolation model on the infinite ladder graph. In a companion paper, we have shown that if the random walk is pulled to the right by a positive bias λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\uplambda > 0$$\end{document}, then its asymptotic linear speed v¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathrm {v}}$$\end{document} is continuous in the variable λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\uplambda > 0$$\end{document} and differentiable for all sufficiently small λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\uplambda > 0$$\end{document}. In the paper at hand, we complement this result by proving that v¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathrm {v}}$$\end{document} is differentiable at λ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\uplambda = 0$$\end{document}. Further, we show the Einstein relation for the model, i.e., that the derivative of the speed at λ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\uplambda = 0$$\end{document} equals the diffusivity of the unbiased walk.
引用
收藏
页码:737 / 772
页数:35
相关论文
共 50 条
  • [1] Einstein Relation for Random Walk in a One-Dimensional Percolation Model
    Gantert, Nina
    Meiners, Matthias
    Mueller, Sebastian
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2019, 176 (04) : 737 - 772
  • [2] Biased random walk in a one-dimensional percolation model
    Axelson-Fisk, Marina
    Haggstrom, Olle
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (10) : 3395 - 3415
  • [3] The speed of critically biased random walk in a one-dimensional percolation model
    Luebbers, Jan-Erik
    Meiners, Matthias
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [4] Regularity of the Speed of Biased Random Walk in a One-Dimensional Percolation Model
    Nina Gantert
    Matthias Meiners
    Sebastian Müller
    [J]. Journal of Statistical Physics, 2018, 170 : 1123 - 1160
  • [5] Regularity of the Speed of Biased Random Walk in a One-Dimensional Percolation Model
    Gantert, Nina
    Meiners, Matthias
    Mueller, Sebastian
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2018, 170 (06) : 1123 - 1160
  • [6] On the Height of One-Dimensional Random Walk
    Abdelkader, Mohamed
    [J]. MATHEMATICS, 2023, 11 (21)
  • [7] Erosion by a one-dimensional random walk
    Chisholm, Rebecca H.
    Hughes, Barry D.
    Landman, Kerry A.
    [J]. PHYSICAL REVIEW E, 2014, 90 (02):
  • [8] RANDOM-WALK IN A ONE-DIMENSIONAL RANDOM MEDIUM
    ASLANGUL, C
    POTTIER, N
    SAINTJAMES, D
    [J]. PHYSICA A, 1990, 164 (01): : 52 - 80
  • [9] The one-dimensional asymmetric persistent random walk
    Rossetto, Vincent
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [10] CLUSTERS IN A ONE-DIMENSIONAL RANDOM-WALK
    AMIRY, AA
    BALAZS, NL
    [J]. ANNALS OF PHYSICS, 1991, 205 (01) : 206 - 218