On Space Efficient Two Dimensional Range Minimum Data Structures

被引:0
|
作者
Gerth Stølting Brodal
Pooya Davoodi
S. Srinivasa Rao
机构
[1] Aarhus University,MADALGO (Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation), Department of Computer Science
[2] Seoul National University,School of Computer Science and Engineering
来源
Algorithmica | 2012年 / 63卷
关键词
Range minimum query; Cartesian tree; Time-space trade-off; Indexing model; Encoding model;
D O I
暂无
中图分类号
学科分类号
摘要
The two dimensional range minimum query problem is to preprocess a static m by n matrix (two dimensional array) A of size N=m⋅n, such that subsequent queries, asking for the position of the minimum element in a rectangular range within A, can be answered efficiently. We study the trade-off between the space and query time of the problem. We show that every algorithm enabled to access A during the query and using a data structure of size O(N/c) bits requires Ω(c) query time, for any c where 1≤c≤N. This lower bound holds for arrays of any dimension. In particular, for the one dimensional version of the problem, the lower bound is tight up to a constant factor. In two dimensions, we complement the lower bound with an indexing data structure of size O(N/c) bits which can be preprocessed in O(N) time to support O(clog 2c) query time. For c=O(1), this is the first O(1) query time algorithm using a data structure of optimal size O(N) bits. For the case where queries can not probe A, we give a data structure of size O(N⋅min {m,log n}) bits with O(1) query time, assuming m≤n. This leaves a gap to the space lower bound of Ω(Nlog m) bits for this version of the problem.
引用
收藏
页码:815 / 830
页数:15
相关论文
共 50 条
  • [1] On Space Efficient Two Dimensional Range Minimum Data Structures
    Brodal, Gerth Stolting
    Davoodi, Pooya
    Rao, S. Srinivasa
    ALGORITHMS-ESA 2010, PT II, 2010, 6347 : 171 - +
  • [2] On Space Efficient Two Dimensional Range Minimum Data Structures
    Brodal, Gerth Stolting
    Davoodi, Pooya
    Rao, S. Srinivasa
    ALGORITHMICA, 2012, 63 (04) : 815 - 830
  • [3] The Encoding Complexity of Two Dimensional Range Minimum Data Structures
    Broda, Gerth Stolting
    Brodnik, Andrej
    Davoodi, Pooya
    ALGORITHMS - ESA 2013, 2013, 8125 : 229 - 240
  • [4] Practical Space-Efficient Data Structures for High-Dimensional Orthogonal Range Searching
    Ishiyama, Kazuki
    Sadakane, Kunihiko
    SIMILARITY SEARCH AND APPLICATIONS, SISAP 2017, 2017, 10609 : 234 - 246
  • [5] Space Efficient Data Structures for Dynamic Orthogonal Range Counting
    He, Meng
    Munro, J. Ian
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 500 - +
  • [6] Space efficient data structures for dynamic orthogonal range counting
    He, Meng
    Munro, J. Ian
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (02): : 268 - 281
  • [7] Two-dimensional range minimum queries
    Amir, Amihood
    Fischer, Johannes
    Lewenstein, Moshe
    COMBINATORIAL PATTERN MATCHING, PROCEEDINGS, 2007, 4580 : 286 - +
  • [8] Efficient processing of narrow range queries in multi-dimensional data structures
    Kratky, Michal
    Snasel, Vaclav
    Pokorny, Jaroslav
    Zezula, Pavel
    10TH INTERNATIONAL DATABASE ENGINEERING AND APPLICATIONS SYMPOSIUM, PROCEEDINGS, 2006, : 69 - 79
  • [9] Data Structures for Range Minimum Queries in Multidimensional Arrays
    Yuan, Hao
    Atallah, Mikhail J.
    PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2010, 135 : 150 - 160
  • [10] Two dimensional range minimum queries and Fibonacci lattices
    Brodal, Gerth Stolting
    Davoodi, Pooya
    Lewenstein, Moshe
    Raman, Rajeev
    Satti, Srinivasa Rao
    THEORETICAL COMPUTER SCIENCE, 2016, 638 : 33 - 43