Steady solutions to the problem of a ball dynamics in a Stokes–Poiseuille flow

被引:0
|
作者
Starovoitov V.N. [1 ,2 ]
机构
[1] Lavrent’ev Institute of Hydrodynamics, pr. Akad. Lavrent’eva 15, Novosibirsk
[2] Novosibirsk State University, ul. Pirogova 2, Novosibirsk
基金
俄罗斯科学基金会;
关键词
cylindrical pipe; rigid body; steady motion; viscous incompressible fluid;
D O I
10.1134/S1990478915040158
中图分类号
学科分类号
摘要
The existence is proved of steady solutions to the problem of motion of a rigid ball in a cylindrical pipe filled with a viscous incompressible fluid. The cross section of the pipe has an arbitrary form and the fluid flow is governed by the Stokes equations. At infinity, the velocity profile tends to that of the Poiseuille flow. It is established that a steady solution exists for an arbitrary position of the ball in the pipe. The ball performs a rectilinear motion along the generators of the pipe, and the linear and angular velocities depend on the position of the ball center in the cross section of the cylinder. © 2015, Pleiades Publishing, Ltd.
引用
收藏
页码:588 / 597
页数:9
相关论文
共 50 条
  • [1] Linear stability of Poiseuille flow over a steady spanwise Stokes layer
    Massaro, Daniele
    Martinelli, Fulvio
    Schmid, Peter
    Quadrio, Maurizio
    PHYSICAL REVIEW FLUIDS, 2023, 8 (10)
  • [2] Vesicle dynamics in a confined Poiseuille flow: From steady state to chaos
    Aouane, Othmane
    Thiebaud, Marine
    Benyoussef, Abdelilah
    Wagner, Christian
    Misbah, Chaouqi
    PHYSICAL REVIEW E, 2014, 90 (03):
  • [3] The stokes problem in a ball and in the exterior of a ball
    Solonnikov V.A.
    Journal of Mathematical Sciences, 2002, 112 (1) : 4073 - 4093
  • [4] Depletion layer dynamics of polyelectrolyte solutions under Poiseuille flow
    Park, Seong Jun
    Shakya, Anisha
    King, John T.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (33) : 16256 - 16261
  • [5] A constrained variational problem for an existence theorem of steady vortex rings in Poiseuille flow
    Mezadek, A. Kainane
    Rebah, D.
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (09)
  • [6] On the Leray problem and the Poiseuille flow
    Chipot, Michel
    ASYMPTOTIC ANALYSIS, 2022, 128 (03) : 337 - 350
  • [7] THE SPECTRAL PROBLEM OF POISEUILLE FLOW
    董明德
    Applied Mathematics and Mechanics(English Edition), 1985, (03) : 213 - 218
  • [8] Poiseuille equation for steady flow of fractal fluid
    Tarasov, Vasily E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (22):
  • [9] Dissipative particle dynamics simulation of macromolecular solutions under Poiseuille flow in microchannels
    Xu Shao-Feng
    Wang Jiu-Gen
    ACTA PHYSICA SINICA, 2013, 62 (12)
  • [10] Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow
    Fedosov, Dmitry A.
    Karniadakis, George Em
    Caswell, Bruce
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (14):