A hybrid feature extraction and machine learning approaches for epileptic seizure detection

被引:0
|
作者
Dinesh Kumar Atal
Mukhtiar Singh
机构
[1] Delhi Technological University,Department of Electrical Engineering
关键词
Electroencepharogram (EEG) signal; Epileptic seizure detection; Enhanced curvelet transformation (ECT); Modified graph theory (MRT); Novel pattern transformation (NPT); Novel random forest classification (NRFC);
D O I
暂无
中图分类号
学科分类号
摘要
Epileptic seizure detection from the brain EEG signals is an essential step for speeding up the diagnosis that assists researchers and medical professionals. For this, various classification signal processing techniques have been developed in the traditional works. Still, they limit with the problems of increased complexity, reduced performance and insufficient classification rate. This motivates to design an automatic system for classifying the normal and abnormal EEG signals. Thus, an efficient machine learning approaches are implemented in this work, to overcome the existing techniques limitations. Here, an enhanced curvelet transform technique is established in order to overcome the disadvantage of Gabor and Wavelet transformations data loss and indiscriminate orientations. This method has the capacity to furnish the all the signals data required with no information loss of shearlet transformation and hence implemented to preprocess the given EEG signal, which smoothen the signal by eliminating the noise. Then, a modified graph theory, fractal dimension and novel pattern transformation techniques are employed to extract the features and patterns. The extraction of features is crucial for classification and compression of huge volume of EEG signal that possess low information. This theory improves the precision and speed of the computational technique. Most of the current research, Graph theory is reflected in the area of quantitative description of the time series data. It is predominantly employed for the reduction of noise and not affected during choosing the factors. From the patterns, the statistical features are extracted by using a standard gray level co-occurrence matrix technique that comprises entropy, homogeneity, energy, correlation and maximum probability. This method calculates the linear dependency of the adjacent samples thereby effective measurement of information loss in the transmitted signal is accomplished. Then, these extracted features are fed to the classifier named as novel random forest classification for detecting and classifying the signal as healthy, ictal and interictal. During simulation, various performance measures have been used for evaluating the results of existing and proposed classification techniques and results validate the efficacy of proposed technique.
引用
收藏
页码:503 / 525
页数:22
相关论文
共 50 条
  • [1] A hybrid feature extraction and machine learning approaches for epileptic seizure detection
    Atal, Dinesh Kumar
    Singh, Mukhtiar
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2020, 31 (02) : 503 - 525
  • [2] An Investigation of Different Machine Learning Approaches for Epileptic Seizure Detection
    Resque, Paulo
    Barros, Alex
    Rosario, Denis
    Cerqueira, Eduardo
    2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 301 - 306
  • [3] Epileptic seizure detection using hybrid machine learning methods
    Subasi, Abdulhamit
    Kevric, Jasmin
    Canbaz, M. Abdullah
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (01): : 317 - 325
  • [4] Epileptic seizure detection using hybrid machine learning methods
    Abdulhamit Subasi
    Jasmin Kevric
    M. Abdullah Canbaz
    Neural Computing and Applications, 2019, 31 : 317 - 325
  • [5] Feature Extraction with Stacked Autoencoders for Epileptic Seizure Detection
    Supratak, Akara
    Li, Ling
    Guo, Yike
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 4184 - 4187
  • [6] Application of Machine Learning in Epileptic Seizure Detection
    Tran, Ly, V
    Tran, Hieu M.
    Le, Tuan M.
    Huynh, Tri T. M.
    Tran, Hung T.
    Dao, Son V. T.
    DIAGNOSTICS, 2022, 12 (11)
  • [7] A Machine Learning Application for Epileptic Seizure Detection
    Anugraha, Ayappan
    Vinotha, Elangovan
    Anusha, Rangarajan
    Giridhar, Sadagopan
    Narasimhan, K.
    2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN DATA SCIENCE (ICCIDS), 2017,
  • [8] Feature extraction from EEG spectrograms for epileptic seizure detection
    Ramos-Aguilar, Ricardo
    Arturo Olvera-Lopez, J.
    Olmos-Pineda, Ivan
    Sanchez-Urrieta, Susana
    PATTERN RECOGNITION LETTERS, 2020, 133 : 202 - 209
  • [9] A Review of Feature Extraction for EEG Epileptic Seizure Detection and Classification
    Boubchir, Larbi
    Daachi, Boubaker
    Pangracious, Vinod
    2017 40TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2017, : 456 - 460
  • [10] Feature Extraction of EEG Signals for Seizure Detection Using Machine Learning Algorthims
    Alsuwaiket, Mohammed A.
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2022, 12 (05) : 9247 - 9251