Cayley-like representations are for all algebras, not merely groups

被引:0
|
作者
Arthur Knoebel
机构
[1] Vanderbilt University,
[2] Nashville,undefined
[3] Tennessee,undefined
[4] U.S.A.,undefined
来源
algebra universalis | 2001年 / 46卷
关键词
Infinite Number; Primal Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
-groups (for fixed p), and those generated by a primal algebra. If the definition of Cayley-like is stretched to allow the representing functions to have an infinite number of arguments, then all algebras are Cayley-like.
引用
收藏
页码:487 / 497
页数:10
相关论文
共 50 条
  • [1] Cayley-like representations are for all algebras, not merely groups
    Knoebel, A
    ALGEBRA UNIVERSALIS, 2001, 46 (04) : 487 - 497
  • [2] Interior Parameters, Exterior Parameters, and a Cayley-Like Transform
    Hurtado, John E.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2009, 32 (02) : 653 - 657
  • [3] REPRESENTATIONS OF CAYLEY-KLEIN ORTHOGONAL ALGEBRAS
    GROMOV, NA
    PHYSICS OF ATOMIC NUCLEI, 1993, 56 (08) : 1124 - 1134
  • [4] REPRESENTATIONS OF UNITARY CAYLEY-KLEIN ALGEBRAS
    GROMOV, NA
    PHYSICS OF ATOMIC NUCLEI, 1993, 56 (08) : 1135 - 1142
  • [5] Automorphism groups of Cayley evolution algebras
    Costoya, C.
    Munoz, V.
    Tocino, A.
    Viruel, A.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (02)
  • [6] Automorphism groups of Cayley evolution algebras
    C. Costoya
    V. Muñoz
    A. Tocino
    A. Viruel
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [7] On Cayley representations of central Cayley graphs over almost simple groups
    Guo, Jin
    Guo, Wenbin
    Ryabov, Grigory
    Vasil'ev, Andrey V.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 57 (01) : 227 - 237
  • [8] On Cayley representations of central Cayley graphs over almost simple groups
    Jin Guo
    Wenbin Guo
    Grigory Ryabov
    Andrey V. Vasil’ev
    Journal of Algebraic Combinatorics, 2023, 57 : 227 - 237
  • [9] CONDITIONS FOR BIREFLECTIONALITY OF AUTOMORPHISM-GROUPS OF CAYLEY ALGEBRAS
    NEUMANN, A
    GEOMETRIAE DEDICATA, 1990, 34 (02) : 145 - 159
  • [10] Almost all Cayley maps are mapical regular representations
    Spiga, Pablo
    Sterzi, Dario
    ARS MATHEMATICA CONTEMPORANEA, 2024, 24 (01)