Composition Operators on Generalized Hardy Spaces

被引:0
|
作者
Juliette Leblond
Elodie Pozzi
Emmanuel Russ
机构
[1] INRIA Sophia Antipolis,Institut de Mathématiques de Bordeaux
[2] Université de Bordeaux,undefined
[3] Institut Fourier,undefined
来源
关键词
Generalized Hardy spaces; Composition operators; Primary 47B33; Secondary 30H10;
D O I
暂无
中图分类号
学科分类号
摘要
We study the composition operators f↦f∘ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\mapsto f\circ \phi $$\end{document} on generalized analytic function spaces named generalized Hardy spaces, on bounded domains of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document}, for holomorphic functions ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} with uniformly bounded derivative. In particular, we provide necessary and/or sufficient conditions on ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}, depending on the geometry of the domains, ensuring that these operators are bounded, invertible, or isometric.
引用
收藏
页码:1733 / 1757
页数:24
相关论文
共 50 条
  • [1] Composition Operators on Generalized Hardy Spaces
    Leblond, Juliette
    Pozzi, Elodie
    Russ, Emmanuel
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (08) : 1733 - 1757
  • [2] COMPACT COMPOSITION OPERATORS ON GENERALIZED HARDY SPACES
    Sharma, Ajay K.
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2008, 15 (04) : 775 - 783
  • [3] Generalized composition operators on weighted Hardy spaces
    Stevic, Stevo
    Sharma, Ajay K.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (17) : 8347 - 8352
  • [4] Hardy spaces of generalized analytic functions and composition operators
    Pozzi, Elodie
    [J]. CONCRETE OPERATORS, 2018, 5 (01): : 9 - 23
  • [5] GENERALIZED WEIGHTED COMPOSITION OPERATORS ON WEIGHTED HARDY SPACES
    Hu, Lian
    Li, Songxiao
    Yang, Rong
    [J]. OPERATORS AND MATRICES, 2023, 17 (04): : 1109 - 1124
  • [6] On Weighted Generalized Composition Operators on Weighted Hardy Spaces
    Datt, Gopal
    Jain, Mukta
    Ohri, Neelima
    [J]. FILOMAT, 2020, 34 (05) : 1689 - 1700
  • [7] Fredholm Generalized Composition Operators on Weighted Hardy Spaces
    Sharma, Sunil Kumar
    Gandhi, Rohit
    Komal, B. S.
    [J]. FILOMAT, 2018, 32 (06) : 2029 - 2033
  • [8] ESSENTIAL NORM OF GENERALIZED COMPOSITION OPERATORS ON WEIGHTED HARDY SPACES
    Sharma, Ajay K.
    [J]. OPERATORS AND MATRICES, 2014, 8 (02): : 399 - 409
  • [9] Generalized composition operators between Hardy and weighted Bergman spaces
    Sharma, Ajay K.
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2012, 78 (1-2): : 187 - 211
  • [10] Generalized composition operators between Hardy and weighted Bergman spaces
    Ajay K. Sharma
    [J]. Acta Scientiarum Mathematicarum, 2012, 78 (1-2): : 187 - 211