Multiple solutions of the Dirichlet problem in multidimensional billiard spaces

被引:0
|
作者
Grzegorz Gabor
Jan Tomeček
机构
[1] Nicolaus Copernicus University in Toruń,Faculty of Mathematics and Computer Science
[2] Palacký University,Department of Mathematical Analysis, and Applications of Mathematics, Faculty of Science
关键词
Dirichlet problem; state-dependent impulses; boundary value problem; billiard; multiplicity results; 34A37; 34B37;
D O I
暂无
中图分类号
学科分类号
摘要
Dirichlet problem in an n-dimensional billiard space is investigated. In particular, the system of ODEs x¨(t)=f(t,x(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{x}(t) = f(t,x(t))$$\end{document} together with Dirichlet boundary conditions x(0)=A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x(0) = A$$\end{document}, x(T)=B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x(T) = B$$\end{document} in an n-dimensional interval K with elastic impact on the boundary of K is considered. The existence of multiple solutions having prescribed number of impacts with the boundary is proved. As a consequence the existence of infinitely many solutions is proved, too. The problem is solved by reformulating it into non-impulsive problem with a discontinuous right-hand side. This auxiliary problem is regularized and the Schauder Fixed Point Theorem is used.
引用
收藏
相关论文
共 50 条