Hamiltonian Formulation of Systems Described Using Fractional Singular Lagrangian

被引:0
|
作者
Chuanjing Song
Om Prakash Agrawal
机构
[1] Suzhou University of Science and Technology,School of Mathematical Sciences
[2] Southern Illinois University at Carbondale,Department of Mechanical Engineering and Energy Processes
来源
关键词
Primary constraint; Constrained Hamilton equation; Poisson bracket; Fractional derivative; 37J06; 70H05; 70H03;
D O I
暂无
中图分类号
学科分类号
摘要
Fractional singular systems defined using mixed integer and Caputo fractional derivative are analyzed. Using these derivatives, fractional primary constraints, fractional constrained Hamilton equations and the corresponding Poisson brackets are established. Several examples are presented to demonstrate applications of the formulations.
引用
收藏
相关论文
共 50 条
  • [1] Hamiltonian Formulation of Systems Described Using Fractional Singular Lagrangian
    Song, Chuanjing
    Agrawal, Om Prakash
    ACTA APPLICANDAE MATHEMATICAE, 2021, 172 (01)
  • [2] Quantization of fractional singular Lagrangian systems using WKB approximation
    Rabei, Eqab M.
    Al Horani, Mohammed
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2018, 33 (36):
  • [3] Hamiltonian Formulation for Continuous Third-order Systems Using Fractional Derivatives
    Alawaideh, Yazen M.
    Hijjawi, Ra'ed S.
    Khalifeh, Jamil M.
    JORDAN JOURNAL OF PHYSICS, 2021, 14 (01): : 35 - 47
  • [4] SINGULAR LAGRANGIAN AND CONSTRAINED HAMILTONIAN-SYSTEMS, GENERALIZED CANONICAL FORMALISM
    KAMIMURA, K
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1982, 68 (01): : 33 - 54
  • [5] Lagrangian and Port-Hamiltonian formulation for Distributed-parameter systems
    Schoeberl, M.
    Schlacher, K.
    IFAC PAPERSONLINE, 2015, 48 (01): : 610 - 615
  • [6] LAGRANGIAN AND HAMILTONIAN FORMULATION OF TRANSMISSION LINE SYSTEMS WITH BOUNDARY ENERGY FLOW
    Jeltsema, Dimitri
    van der Schaft, Arjan J.
    REPORTS ON MATHEMATICAL PHYSICS, 2009, 63 (01) : 55 - 74
  • [7] LAGRANGIAN AND HAMILTONIAN MECHANICS WITH FRACTIONAL DERIVATIVES
    Popescu, Emil
    ROMANIAN ASTRONOMICAL JOURNAL, 2013, 23 (02): : 85 - 97
  • [8] Hamiltonian formulation of fractional kinetics
    Abe, Sumiyoshi
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (5-6): : 683 - 691
  • [9] Hamiltonian formulation of fractional kinetics
    Sumiyoshi Abe
    The European Physical Journal Special Topics, 2018, 227 : 683 - 691
  • [10] HAMILTONIAN DESCRIPTION OF SINGULAR LAGRANGIAN SYSTEMS WITH SPONTANEOUSLY BROKEN TIME TRANSLATION SYMMETRY
    Zhao, Liu
    Yu, Pengfei
    Xu, Wei
    MODERN PHYSICS LETTERS A, 2013, 28 (05)