Complete spacelike submanifolds with parallel mean curvature vector in a semi-Euclidean space

被引:0
|
作者
H. F. De Lima
F. R. Dos Santos
M. A. L. Velásquez
机构
[1] Universidade Federal de Campina Grande,Departamento de Matemática
来源
Acta Mathematica Hungarica | 2016年 / 150卷
关键词
semi-Euclidean space; Lorentz–Minkowski space; complete spacelike submanifold; totally geodesic submanifold; parallel mean curvature vector; normalized scalar curvature; constant mean curvature spacelike hypersurface; primary 53C42; secondary 53C20; 53C50;
D O I
暂无
中图分类号
学科分类号
摘要
Our aim in this article is to study the geometry of n-dimensional complete spacelike submanifolds immersed in a semi-Euclidean space Rqn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n+p}_{q}}$$\end{document} of index q, with 1≤q≤p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1\leq q\leq p}$$\end{document}. Under suitable constraints on the Ricci curvature and on the second fundamental form, we establish sufficient conditions to a complete maximal spacelike submanifold of Rqn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n+p}_{q}}$$\end{document} be totally geodesic. Furthermore, we obtain a nonexistence result concerning complete spacelike submanifolds with nonzero parallel mean curvature vector in Rpn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n+p}_{p}}$$\end{document} and, as a consequence, we get a rigidity result for complete constant mean curvature spacelike hypersurfaces immersed in the Lorentz–Minkowski space R1n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n+1}_{1}}$$\end{document}.
引用
收藏
页码:217 / 227
页数:10
相关论文
共 50 条