The trace class conjecture in the theory of automorphic forms. II

被引:0
|
作者
W. Müller;
机构
[1] Mathematisches Institut,
[2] Universität Bonn,undefined
[3] Beringstrasse 1,undefined
[4] D-53115 Bonn,undefined
[5] Germany e-mail: mueller@rhein.iam.uni-bonn.de,undefined
来源
Geometric & Functional Analysis GAFA | 1998年 / 8卷
关键词
Automorphic Form; Trace Class; Regular Representation; Real Point; Arithmetic Subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be the group of real points of a reductive algebraic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \Bbb {Q} $\end{document}-group satisfying the assumptions made in [H, Chapter I] and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \Gamma $\end{document} be an arithmetic subgroup of G. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ R_{\Gamma} $\end{document} be the right regular representation of G on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L^2(\Gamma \backslash G) $\end{document} and denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ R^d_\Gamma $\end{document} the restriction of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ R_\Gamma $\end{document} to the discrete subspace. In this paper we prove that for every integrable rapidly decreasing function f on G, the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ R^d_\Gamma (f) $\end{document} is of the trace class.
引用
收藏
页码:315 / 355
页数:40
相关论文
共 50 条