The minimum principle for affine functions and isomorphisms of continuous affine function spaces

被引:0
|
作者
Petr Dostál
Jiří Spurný
机构
[1] Charles University,Department of Probability and Mathematical Statistics Faculty of Mathematics and Physics
[2] Charles University,Department of Mathematical Analysis Faculty of Mathematics and Physics
来源
Archiv der Mathematik | 2020年 / 114卷
关键词
Compact convex set; Affine function; Point of continuity property; Banach–Stone theorem; 46A55; 46B03;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a compact convex set and let ext X stand for the set of extreme points of X. We show that if f:X→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:X\rightarrow {\mathbb {R}}$$\end{document} is an affine function with the point of continuity property such that f≤0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\le 0$$\end{document} on extX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ext}}\,X$$\end{document}, then f≤0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\le 0$$\end{document} on X. As a corollary of this minimum principle, we obtain a generalization of a theorem by C.H. Chu and H.B. Cohen by proving the following result. Let X, Y be compact convex sets such that every extreme point of X and Y is a weak peak point and let T:Ac(X)→Ac(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:\mathfrak {A}^c(X)\rightarrow \mathfrak {A}^c(Y)$$\end{document} be an isomorphism such that T·T-1<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| T\right\| \cdot \left\| T^{-1}\right\| <2$$\end{document}. Then extX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ext}}\,X$$\end{document} is homeomorphic to extY\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ext}}\,Y$$\end{document}.
引用
收藏
页码:61 / 70
页数:9
相关论文
共 50 条