Non-Linear Binding and the Diffusion–Migration Test

被引:1
|
作者
Olivier Coussy
Robert Eymard
机构
[1] UMR113,Laboratoire des Matériaux et des Structures du Génie Civil
[2] LCPC/ENPC/CNRS,Laboratoire d'Etude des Transferts d'Energie et de Matière
[3] Université de Marne la Vallée,undefined
来源
Transport in Porous Media | 2003年 / 53卷
关键词
non-linear binding; diffusion–migration test; time-lag; penetration front; Freundlich isotherm; travelling wave;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the non-linear binding effects upon the diffusion–migration test. For the diffusion test we derive the conditions required for the non-linear binding isotherm to produce an actual penetration front. When more than two ion species are present we show that the diffusion coefficient associated with a particular ion cannot be extracted from the diffusion test on account of multi-species electrical effects. In the migration test where an external electrical field is applied to the sample, we give the conditions required for the propagation of a stable ‘travelling wave’. In addition new explicit expressions of the time-lag are obtained for both tests, allowing the determination of the properties of the unknown binding isotherm whatever its physical nature. Throughout the paper the results and the method are illustrated by the diffusion of the Cl− ion within cement-based materials, using experimental data extracted from literature. The theoretical predictions compare well to these experimental data.
引用
收藏
页码:51 / 74
页数:23
相关论文
共 50 条
  • [1] Non-linear binding and the diffusion-migration test
    Coussy, O
    Eymard, R
    [J]. TRANSPORT IN POROUS MEDIA, 2003, 53 (01) : 51 - 74
  • [2] Approximating non-linear diffusion
    Dam, E
    Olsen, OF
    Nielsen, M
    [J]. SCALE SPACE METHODS IN COMPUTER VISION, PROCEEDINGS, 2003, 2695 : 117 - 131
  • [3] NON-LINEAR HEAT DIFFUSION
    ANDRETALAMON, T
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1968, 11 (09) : 1351 - +
  • [4] NON-LINEAR DIFFUSION OF TEST PARTICLES IN THE PRESENCE OF AN EXTERNAL CONSERVATIVE FORCE
    BOFFI, VC
    SPIGA, G
    [J]. PHYSICS OF FLUIDS, 1982, 25 (11) : 1987 - 1992
  • [5] Exploring non-linear diffusion: The diffusion echo
    Dam, E
    Nielsen, M
    [J]. SCALE-SPACE AND MORPHOLOGY IN COMPUTER VISION, PROCEEDINGS, 2001, 2106 : 264 - 272
  • [6] Non-linear diffusion of cosmic rays
    Ptuskin, V. S.
    Zirakashvili, V. N.
    Plesser, A. A.
    [J]. ADVANCES IN SPACE RESEARCH, 2008, 42 (03) : 486 - 490
  • [7] NON-LINEAR DIFFUSION IN A FINITE LAYER
    PARLANGE, JY
    LOCKINGTON, DA
    BRADDOCK, RD
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1982, 26 (02) : 249 - 262
  • [8] SOLUTION OF A NON-LINEAR DIFFUSION EQUATION
    BABADSHANJAN, H
    GAJEWSKI, H
    [J]. MATHEMATISCHE NACHRICHTEN, 1977, 79 : 253 - 259
  • [9] Non-linear effects in diffusion on nanoscale
    Beke, DL
    Erdélyi, Z
    Szabó, IA
    Langer, GA
    Katona, GL
    Cserháti, C
    [J]. DIFFUSION IN MATERIALS: DIMAT 2004, PTS 1 AND 2, 2005, 237-240 : 1031 - 1042
  • [10] NON-LINEAR DIFFUSION OF VACANCIES IN A CRYSTAL
    HARA, H
    FUJITA, S
    WATANABE, R
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1979, 18 (04) : 271 - 277