Existence of Dissipative Solutions to the Compressible Navier-Stokes System with Potential Temperature Transport

被引:0
|
作者
Mária Lukáčová-Medvid’ová
Andreas Schömer
机构
[1] Johannes Gutenberg-University Mainz,Institute of Mathematics
关键词
Compressible Navier-Stokes system; Young measure; Measure-valued solution; Finite element scheme; Finite volume scheme; Stability; Consistency; Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce dissipative solutions to the compressible Navier-Stokes system with potential temperature transport motivated by the concept of Young measures. We prove their global-in-time existence by means of convergence analysis of a mixed finite element-finite volume method. If a strong solution to the compressible Navier-Stokes system with potential temperature transport exists, we prove the strong convergence of numerical solutions. Our results hold for the full range of adiabatic indices including the physically relevant cases in which the existence of global-in-time weak solutions is open.
引用
收藏
相关论文
共 50 条
  • [1] Existence of Dissipative Solutions to the Compressible Navier-Stokes System with Potential Temperature Transport
    Lukacova-Medvid'ova, Maria
    Schoemer, Andreas
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (03)
  • [2] GLOBAL STRONG SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES SYSTEM WITH POTENTIAL TEMPERATURE TRANSPORT
    Zhai, Xiaoping
    Li, Yongsheng
    Zhou, Fujun
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (08) : 2247 - 2260
  • [3] Existence of solutions for the compressible Navier-Stokes equations
    Yin, HC
    [J]. CHINESE SCIENCE BULLETIN, 1996, 41 (10): : 805 - 812
  • [4] Existence of weak solutions for compressible Navier-Stokes equations with entropy transport
    Maltese, David
    Michalek, Martin
    Mucha, Piotr B.
    Novotny, Antonin
    Pokorny, Milan
    Zatorska, Ewelina
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (08) : 4448 - 4485
  • [5] Dissipative measure-valued solutions to the compressible Navier-Stokes system
    Feireisl, Eduard
    Gwiazda, Piotr
    Swierczewska-Gwiazda, Agnieszka
    Wiedemann, Emil
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (06)
  • [6] DISSIPATIVE SOLUTIONS TO THE COMPRESSIBLE ISENTROPIC NAVIER-STOKES EQUATIONS
    Guo, Liang
    Li, Fucai
    Yu, Cheng
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (07) : 1961 - 1987
  • [7] ON THE EXISTENCE OF STATIONARY SOLUTIONS TO COMPRESSIBLE NAVIER-STOKES EQUATIONS
    VALLI, A
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1987, 4 (01): : 99 - 113
  • [8] COMPRESSIBLE NAVIER-STOKES SYSTEM WITH TRANSPORT NOISE
    Breit, Dominic
    Feireisl, Eduard
    Hofmanova, Martina
    Zatorska, Ewelina
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (04) : 4465 - 4494
  • [9] GLOBAL EXISTENCE OF SOLUTIONS FOR ISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS
    LIONS, PL
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (12): : 1335 - 1340
  • [10] Global existence of solutions for compressible Navier-Stokes equations with vacuum
    Qin, Xulong
    Yao, Zheng-an
    Zhou, Wenshu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) : 226 - 238