General criteria for quantum state smoothing with necessary and sufficient criteria for linear Gaussian quantum systems

被引:0
|
作者
Kiarn T. Laverick
Areeya Chantasri
Howard M. Wiseman
机构
[1] Griffith University,Centre for Quantum Computation and Communication Technology (Australian Research Council), Centre for Quantum Dynamics
关键词
Open quantum systems; Quantum metrology; Quantum state estimation; Smoothing and linear Gaussian systems;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum state smoothing is a technique for estimating the quantum state of a partially observed quantum system at time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, conditioned on an entire observed measurement record (both before and after τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}). However, this smoothing technique requires an observer (Alice, say) to know the nature of the measurement records that are unknown to her in order to characterize the possible true states for Bob’s (say) systems. If Alice makes an incorrect assumption about the set of true states for Bob’s system, she will obtain a smoothed state that is suboptimal, and, worse, may be unrealizable (not corresponding to a valid evolution for the true states) or even unphysical (not represented by a state matrix ρ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho \ge 0$$\end{document}). In this paper, we review the historical background to quantum state smoothing, and list general criteria a smoothed quantum state should satisfy. Then we derive, for the case of linear Gaussian quantum systems, a necessary and sufficient constraint for realisability on the covariance matrix of the true state. Naturally, a realizable covariance of the true state guarantees a smoothed state which is physical. It might be thought that any putative true covariance which gives a physical smoothed state would be a realizable true covariance, but we show explicitly that this is not so. This underlines the importance of the realisability constraint.
引用
收藏
页码:37 / 50
页数:13
相关论文
共 50 条
  • [1] General criteria for quantum state smoothing with necessary and sufficient criteria for linear Gaussian quantum systems
    Laverick, Kiarn T.
    Chantasri, Areeya
    Wiseman, Howard M.
    [J]. QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2021, 8 (01) : 37 - 50
  • [2] Quantum State Smoothing for Linear Gaussian Systems
    Laverick, Kiarn T.
    Chantasri, Areeya
    Wiseman, Howard M.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (19)
  • [3] Necessary and sufficient stability criteria for linear systems with delays
    Xu, BG
    [J]. TIME DELAY SYSTEMS, 2002, : 123 - 128
  • [4] Quantum entanglement beyond Gaussian criteria
    Gomes, R. M.
    Salles, A.
    Toscano, F.
    Souto Ribeiro, P. H.
    Walborn, S. P.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (51) : 21517 - 21520
  • [5] A Necessary and Sufficient Criterion for the Separability of Quantum State
    Jun-Li Li
    Cong-Feng Qiao
    [J]. Scientific Reports, 8
  • [6] A Necessary and Sufficient Criterion for the Separability of Quantum State
    Li, Jun-Li
    Qiao, Cong-Feng
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [7] Necessary and Sufficient Product Criteria for Quantum States via the Rank of Realignment Matrix of Density Matrix
    Qi, Xianfei
    Gao, Ting
    Yan, Fengli
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (11) : 3642 - 3648
  • [8] Necessary and Sufficient Product Criteria for Quantum States via the Rank of Realignment Matrix of Density Matrix
    Xianfei Qi
    Ting Gao
    Fengli Yan
    [J]. International Journal of Theoretical Physics, 2017, 56 : 3642 - 3648
  • [9] Sufficient condition for a quantum state to be genuinely quantum non-Gaussian
    Happ, L.
    Efremov, M. A.
    Nha, H.
    Schleich, W. P.
    [J]. NEW JOURNAL OF PHYSICS, 2018, 20
  • [10] Necessary and sufficient criteria for asynchronous stabilization of Markovian jump systems
    Guan, Chaoxu
    Fei, Zhongyang
    Yang, Ting
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (03): : 1468 - 1483