Portfolio selection in quantile decision models

被引:0
|
作者
Luciano de Castro
Antonio F. Galvao
Gabriel Montes-Rojas
Jose Olmo
机构
[1] University of Iowa,Department of Economics
[2] Michigan State University,Department of Economics
[3] Universidad de Buenos Aires,CONICET and Instituto Interdisciplinario de Economía Política
[4] Universidad de Zaragoza,Department of Economic Analysis
[5] University of Southampton,Department of Economics
来源
Annals of Finance | 2022年 / 18卷
关键词
Optimal asset allocation; Quantile preferences; Portfolio theory; Risk attitude; G11;
D O I
暂无
中图分类号
学科分类号
摘要
This paper develops a model for optimal portfolio allocation for an investor with quantile preferences, i.e., who maximizes the τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-quantile of the portfolio return, for τ∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in (0,1)$$\end{document}. Quantile preferences allow to study heterogeneity in individuals’ portfolio choice by varying the quantiles, and have a solid axiomatic foundation. Their associated risk attitude is captured entirely by a single dimensional parameter (the quantile τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}), instead of the utility function. We formally establish the properties of the quantile model. The presence of a risk-free asset in the portfolio produces an all-or-nothing optimal response to the risk-free asset that depends on investors’ quantile preference. In addition, when both assets are risky, we derive conditions under which the optimal portfolio decision has an interior solution that guarantees diversification vis-à-vis fully investing in a single risky asset. We also derive conditions under which the optimal portfolio decision is characterized by two regions: full diversification for quantiles below the median and no diversification for upper quantiles. These results are illustrated in an exhaustive simulation study and an empirical application using a tactical portfolio of stocks, bonds and a risk-free asset. The results show heterogeneity in portfolio diversification across risk attitudes.
引用
收藏
页码:133 / 181
页数:48
相关论文
共 50 条
  • [1] Portfolio selection in quantile decision models
    de Castro, Luciano
    Galvao, Antonio F.
    Montes-Rojas, Gabriel
    Olmo, Jose
    [J]. ANNALS OF FINANCE, 2022, 18 (02) : 133 - 181
  • [2] Experiments on portfolio selection: A comparison between quantile preferences and expected utility decision models
    de Castro, Luciano
    Galvao, Antonio F.
    Kim, Jeong Yeol
    Montes-Rojas, Gabriel
    Olmo, Jose
    [J]. JOURNAL OF BEHAVIORAL AND EXPERIMENTAL ECONOMICS, 2022, 97
  • [3] Optimal portfolio selection using quantile and composite quantile regression models
    Aghamohammadi, A.
    Dadashi, H.
    Sojoudi, Mahdi
    Sojoudi, Meysam
    Tavoosi, M.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (07) : 3047 - 3057
  • [4] Discrete approximation in quantile problem of portfolio selection
    Kibzun, A
    Lepp, R
    [J]. STOCHASTIC OPTIMIZATION: ALGORITHMS AND APPLICATIONS, 2001, 54 : 121 - 135
  • [5] Quantile-based optimal portfolio selection
    Bodnar, Taras
    Lindholm, Mathias
    Thorsen, Erik
    Tyrcha, Joanna
    [J]. COMPUTATIONAL MANAGEMENT SCIENCE, 2021, 18 (03) : 299 - 324
  • [6] Quantile-based optimal portfolio selection
    Taras Bodnar
    Mathias Lindholm
    Erik Thorsén
    Joanna Tyrcha
    [J]. Computational Management Science, 2021, 18 : 299 - 324
  • [7] Tail risks in large portfolio selection: penalized quantile and expectile minimum deviation models
    Giacometti, R.
    Torri, G.
    Paterlini, S.
    [J]. QUANTITATIVE FINANCE, 2021, 21 (02) : 243 - 261
  • [8] Portfolio Selection Models Considering Fuzzy Preference Relations of Decision Makers
    Guo, Weiwei
    Zhang, Wei-Guo
    Chen, Xiaoqing
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (04): : 2254 - 2265
  • [9] Quantile approximations in auto-regressive portfolio models
    Ahcan, Ales
    Masten, Igor
    Polanec, Saso
    Perman, Mihael
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) : 1976 - 1983
  • [10] On the stability of portfolio selection models
    Cesarone, Francesco
    Mango, Fabiomassimo
    Mottura, Carlo Domenico
    Ricci, Jacopo Maria
    Tardella, Fabio
    [J]. JOURNAL OF EMPIRICAL FINANCE, 2020, 59 : 210 - 234