Weak Dynamic Coloring of Planar Graphs

被引:0
|
作者
Caroline Accurso
Vitaliy Chernyshov
Leaha Hand
Sogol Jahanbekam
Paul Wenger
机构
[1] DeSales University,Department of Mathematics
[2] Rochester Institute of Technology,School of Mathematical Sciences
[3] Boise State University,Department of Mathematics
[4] San Jose State University,Department of Mathematics and Statistics
来源
Graphs and Combinatorics | 2024年 / 40卷
关键词
Coloring of graphs; Planar graphs; Extremal problems; 05C15; 05C10; 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
The k-weak-dynamic number of a graph G is the smallest number of colors we need to color the vertices of G in such a way that each vertex v of degree d(v) sees at least min{k,d(v)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{k,d(v)\}$$\end{document} colors on its neighborhood. We use reducible configurations and list coloring of graphs to prove that all planar graphs have 3-weak-dynamic number at most 6.
引用
收藏
相关论文
共 50 条
  • [1] Weak Dynamic Coloring of Planar Graphs
    Accurso, Caroline
    Chernyshov, Vitaliy
    Hand, Leaha
    Jahanbekam, Sogol
    Wenger, Paul
    [J]. GRAPHS AND COMBINATORICS, 2024, 40 (02)
  • [2] Dynamic coloring and list dynamic coloring of planar graphs
    Kim, Seog-Jin
    Lee, Sang June
    Park, Won-Jin
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2207 - 2212
  • [3] On dynamic coloring for planar graphs and graphs of higher genus
    Chen, Ye
    Fan, Suohai
    Lai, Hong-Jian
    Song, Huimin
    Sun, Lei
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1064 - 1071
  • [4] On the weak 2-coloring number of planar graphs
    Almulhim, Ahlam
    Kierstead, H. A.
    [J]. DISCRETE MATHEMATICS, 2022, 345 (01)
  • [5] Dynamic list coloring of 1-planar graphs
    Zhang, Xin
    Li, Yan
    [J]. DISCRETE MATHEMATICS, 2021, 344 (05)
  • [6] Weak-Dynamic Coloring of Graphs Beyond-Planarity
    Liu, Weichan
    Yan, Guiying
    [J]. GRAPHS AND COMBINATORICS, 2024, 40 (01)
  • [7] Weak-Dynamic Coloring of Graphs Beyond-Planarity
    Weichan Liu
    Guiying Yan
    [J]. Graphs and Combinatorics, 2024, 40
  • [8] Circular coloring and fractional coloring in planar graphs
    Hu, Xiaolan
    Li, Jiaao
    [J]. JOURNAL OF GRAPH THEORY, 2022, 99 (02) : 312 - 343
  • [9] ON THE TOTAL COLORING OF PLANAR GRAPHS
    BORODIN, OV
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 394 : 180 - 185
  • [10] Coloring powers of planar graphs
    Agnarsson, G
    Halldórsson, MM
    [J]. PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 654 - 662