An interior point method, based on rank-1 updates, for linear programming

被引:0
|
作者
Jos F. Sturm
Shuzhong Zhang
机构
[1] Erasmus University Rotterdam,Econometric Institute
来源
Mathematical Programming | 1998年 / 81卷
关键词
Linear programming; Interior point method; Potential function;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a polynomial time primal—dual potential reduction algorithm for linear programming. The algorithm generates sequencesdk andvk rather than a primal—dual interior point (xk,sk), where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$d_i^k = \sqrt {{{x_i^k } \mathord{\left/ {\vphantom {{x_i^k } {s_i^k }}} \right. \kern-\nulldelimiterspace} {s_i^k }}} $$ \end{document} and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$v_i^k = \sqrt {x_i^k s_i^k }$$ \end{document} fori = 1, 2,⋯,n. Only one element ofdk is changed in each iteration, so that the work per iteration is bounded by O(mn) using rank-1 updating techniques. The usual primal—dual iteratesxk andsk are not needed explicitly in the algorithm, whereasdk andvk are iterated so that the interior primal—dual solutions can always be recovered by aforementioned relations between (xk, sk) and (dk, vk) with improving primal—dual potential function values. Moreover, no approximation ofdk is needed in the computation of projection directions. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
引用
收藏
页码:77 / 87
页数:10
相关论文
共 50 条