Uncertainty Principle for Free Metaplectic Transformation

被引:0
|
作者
Zhichao Zhang
机构
[1] Nanjing University of Information Science and Technology,School of Mathematics and Statistics
[2] Nanjing University of Information Science and Technology,Center for Applied Mathematics of Jiangsu Province
[3] Nanjing University of Information Science and Technology,Jiangsu International Joint Laboratory on System Modeling and Data Analysis
关键词
Uncertainty principle; Free metaplectic transformation (FMT); Trace; Eigenvalue; Positive semidefinite matrix; Symmetric matrix; 15A18; 15A42; 15B48; 42A38; 42B10; 70H15;
D O I
暂无
中图分类号
学科分类号
摘要
This study devotes to Heisenberg’s uncertainty inequalities of complex-valued functions in two free metaplectic transformation (FMT) domains without the assumption of orthogonality. In our latest work (Zhang in J Fourier Anal Appl 27(4):68, 2021), it is crucial that the FMT needs to be orthogonal for a decoupling of the cross terms. Instead of applying the orthogonality assumption, our current work uses the trace inequality for the product of symmetric matrices and positive semidefinite matrices to address the problem of coupling between cross terms. It formulates two types of lower bounds on the uncertainty product of complex-valued functions for two FMTs. The first one relies on the minimum eigenvalues of AjTAj-BjTAj,BjTAj,BjTBj-BjTAj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{A}_j^{\textrm{T}}\textbf{A}_j-\textbf{B}_j^{\textrm{T}}\textbf{A}_j,\textbf{B}_j^{\textrm{T}}\textbf{A}_j,\textbf{B}_j^{\textrm{T}}\textbf{B}_j-\textbf{B}_j^{\textrm{T}}\textbf{A}_j$$\end{document}, while the other one relies on the minimum eigenvalues of AjTAj+BjTAj,BjTBj+BjTAj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{A}_j^{\textrm{T}}\textbf{A}_j+\textbf{B}_j^{\textrm{T}}\textbf{A}_j,\textbf{B}_j^{\textrm{T}}\textbf{B}_j+\textbf{B}_j^{\textrm{T}}\textbf{A}_j$$\end{document} and the maximum eigenvalues of BjTAj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{B}_j^{\textrm{T}}\textbf{A}_j$$\end{document}, where Aj,Bj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{A}_j,\textbf{B}_j$$\end{document}, j=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,2$$\end{document} are the blocks found in symplectic matrices. Also, they are all relying on the covariance and absolute covariance. Sufficient conditions that truly give rise to the lower bounds are obtained. The theoretical results are verified by examples and experiments.
引用
收藏
相关论文
共 50 条
  • [1] Uncertainty Principle for Free Metaplectic Transformation
    Zhang, Zhichao
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2023, 29 (06)
  • [2] Uncertainty Principle for Real Functions in Free Metaplectic Transformation Domains
    Zhichao Zhang
    [J]. Journal of Fourier Analysis and Applications, 2019, 25 : 2899 - 2922
  • [3] Uncertainty Principle for Real Functions in Free Metaplectic Transformation Domains
    Zhang, Zhichao
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (06) : 2899 - 2922
  • [4] The N-Dimensional Uncertainty Principle for the Free Metaplectic Transformation
    Jing, Rui
    Liu, Bei
    Li, Rui
    Liu, Rui
    [J]. MATHEMATICS, 2020, 8 (10) : 1 - 15
  • [5] Uncertainty Principle of Complex-Valued Functions in Specific Free Metaplectic Transformation Domains
    Zhang, Zhichao
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (04)
  • [6] Uncertainty Principle of Complex-Valued Functions in Specific Free Metaplectic Transformation Domains
    Zhichao Zhang
    [J]. Journal of Fourier Analysis and Applications, 2021, 27
  • [7] Uncertainty principles for short-time free metaplectic transformation
    Zhang, Zhichao
    He, Liang
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024,
  • [8] Convolution theorems for the free metaplectic transformation and its application
    Zhao, Hui
    Li, Bing-Zhao
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (16): : 12378 - 12393
  • [9] The uncertainty principle and free will
    Margenau, H.
    [J]. SCIENCE, 1931, 74 (1928) : 596 - 596
  • [10] The uncertainty principle and free will
    Compton, A. H.
    [J]. SCIENCE, 1931, 74 (1911) : 172 - 172