A topological Ramsey classification of countable ordinals. II

被引:0
|
作者
C. Piña
机构
[1] Université Paris VII- Denis Diderot,UFR de Mathématiques
[2] Universidad de los Andes,Departamento de Matemáticas
来源
Acta Mathematica Hungarica | 2015年 / 147卷
关键词
partition of countable ordinal spaces; Schreier barrier; oscillation map; finite Ramsey theorem; primary 03E02; secondary 05D10;
D O I
暂无
中图分类号
学科分类号
摘要
We provide optimal values for m satisfying the partition relation ∀l>1,α→(topω2+1)l,m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\forall l > 1, \alpha \rightarrow ({\rm top} \omega^{2} + 1)^{2}_{l,m}}}$$\end{document} when α=ωω+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\alpha = {\omega^{\omega}} +1}}$$\end{document} and when α=ωωk,foreveryk>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\alpha = {\omega^{{\omega}^{k}}}, {\rm for every} k > 1}}$$\end{document}.
引用
收藏
页码:510 / 527
页数:17
相关论文
共 50 条
  • [1] A TOPOLOGICAL RAMSEY CLASSIFICATION OF COUNTABLE ORDINALS. II
    Pina, C.
    ACTA MATHEMATICA HUNGARICA, 2015, 147 (02) : 510 - 527
  • [2] Topological Ramsey numbers and countable ordinals
    Caicedo, Andres Eduardo
    Hilton, Jacob
    FOUNDATIONS OF MATHEMATICS, 2017, 690 : 87 - 120
  • [3] Topological Ramsey spaces of equivalence relations and a dual Ramsey theorem for countable ordinals
    Kawach, Jamal K.
    Todorcevic, Stevo
    ADVANCES IN MATHEMATICS, 2022, 396
  • [4] COUNTABLE ORDINALS AND BIG RAMSEY DEGREES
    Masulovic, Dragan
    Sobot, Branislav
    COMBINATORICA, 2021, 41 (03) : 425 - 446
  • [5] Countable Ordinals and Big Ramsey Degrees
    Dragan Mašulović
    Branislav Šobot
    Combinatorica, 2021, 41 : 425 - 446
  • [6] Topological partition relations for countable ordinals
    Ojeda-Aristizabal, Diana
    Weiss, William
    FUNDAMENTA MATHEMATICAE, 2019, 244 (02) : 147 - 166
  • [7] Countable successor ordinals as generalized ordered topological spaces
    Bonnet, Robert
    Leiderman, Arkady
    TOPOLOGY AND ITS APPLICATIONS, 2018, 241 : 197 - 202
  • [8] Unorderly ordinals. On suppletion and related issues of ordinals in Europe and Mesoamerica
    Stolz, Thomas
    Robbers, Maja
    STUF-LANGUAGE TYPOLOGY AND UNIVERSALS, 2016, 69 (04) : 565 - 594
  • [9] Countable partition ordinals
    Schipperus, Rene
    ANNALS OF PURE AND APPLIED LOGIC, 2010, 161 (10) : 1195 - 1215
  • [10] Images of the countable ordinals
    Bennett, Harold
    Davis, Sheldon
    Lutzer, David
    TOPOLOGY AND ITS APPLICATIONS, 2017, 221 : 610 - 623