Complete weight enumerators of a class of linear codes

被引:1
|
作者
Jaehyun Ahn
Dongseok Ka
Chengju Li
机构
[1] Chungnam National University,Department of Mathematics
[2] East China Normal University,School of Computer Science and Software Engineering
[3] KAIST,Department of Mathematics
来源
关键词
Linear codes; Weight distribution; Gauss sums; 94B05; 11T23; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Let Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q}$$\end{document} be the finite field with q=pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=p^{m}$$\end{document} elements, where p is an odd prime and m is a positive integer. For a positive integer t, let D⊂Fqt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\subset \mathbb {F}^{t}_{q}$$\end{document} and let Trm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {Tr}}_{m}$$\end{document} be the trace function from Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q}$$\end{document} onto Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{p}$$\end{document}. In this paper, let D={(x1,x2,…,xt)∈Fqt\{(0,0,…,0)}:Trm(x1+x2+⋯+xt)=0},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=\{(x_{1},x_{2},\ldots ,x_{t}) \in \mathbb {F}_{q}^{t}\setminus \{(0,0,\ldots ,0)\} : {\mathrm {Tr}}_{m}(x_{1}+x_{2}+\cdots +x_{t})=0\},$$\end{document} we define a p-ary linear code CD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}_{D}$$\end{document} by CD={c(a1,a2,…,at):(a1,a2,…,at)∈Fqt},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathcal {C}_{D}=\{\mathbf {c}(a_{1},a_{2},\ldots ,a_{t}) : (a_{1},a_{2},\ldots ,a_{t})\in \mathbb {F}^{t}_{q}\}, \end{aligned}$$\end{document}where c(a1,a2,…,at)=(Trm(a1x12+a2x22+⋯+atxt2))(x1,x2,…,xt)∈D.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathbf {c}(a_{1},a_{2},\ldots ,a_{t})=({\mathrm {Tr}}_{m}(a_{1}x^{2}_{1}+a_{2}x^{2}_{2}+\cdots +a_{t}x^{2}_{t}))_{(x_{1},x_{2},\ldots ,x_{t}) \in D}. \end{aligned}$$\end{document}We shall present the complete weight enumerators of the linear codes CD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}_{D}$$\end{document} and give several classes of linear codes with a few weights. This paper generalizes the results of Yang and Yao (Des Codes Cryptogr, 2016).
引用
收藏
页码:83 / 99
页数:16
相关论文
共 50 条
  • [1] A Class of Linear Codes and Their Complete Weight Enumerators
    Kong, Xiangli
    Yang, Shudi
    [J]. IEEE ACCESS, 2019, 7 : 127833 - 127838
  • [2] Complete weight enumerators of a class of linear codes
    Yang, Shudi
    Yao, Zheng-An
    [J]. DISCRETE MATHEMATICS, 2017, 340 (04) : 729 - 739
  • [3] A CLASS OF LINEAR CODES AND THEIR COMPLETE WEIGHT ENUMERATORS
    Wang, Dandan
    Cao, Xiwang
    Luo, Gaojun
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2021, 15 (01) : 73 - 97
  • [4] Complete weight enumerators of a class of linear codes
    Ahn, Jaehyun
    Ka, Dongseok
    Li, Chengju
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2017, 83 (01) : 83 - 99
  • [5] Complete weight enumerators of a new class of linear codes
    Liu, Yiwei
    Liu, Zihui
    [J]. DISCRETE MATHEMATICS, 2018, 341 (07) : 1959 - 1972
  • [6] A class of three-weight linear codes and their complete weight enumerators
    Shudi Yang
    Zheng-An Yao
    Chang-An Zhao
    [J]. Cryptography and Communications, 2017, 9 : 133 - 149
  • [7] Complete weight enumerators of a class of three-weight linear codes
    Li, Fei
    Wang, Qiuyan
    Lin, Dongdai
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 55 (1-2) : 733 - 747
  • [8] Complete weight enumerators of a class of two-weight linear codes
    Shudi Yang
    Qin Yue
    Yansheng Wu
    Xiangli Kong
    [J]. Cryptography and Communications, 2019, 11 : 609 - 620
  • [9] A class of three-weight linear codes and their complete weight enumerators
    Yang, Shudi
    Yao, Zheng-An
    Zhao, Chang-An
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2017, 9 (01): : 133 - 149
  • [10] Complete weight enumerators of a class of two-weight linear codes
    Yang, Shudi
    Yue, Qin
    Wu, Yansheng
    Kong, Xiangli
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (04): : 609 - 620