We consider the isometry groups of Riemannian solvmanifolds and also study a wider class of homogeneous aspheric Riemannian spaces. We clarify the topological structure of these spaces (Theorem 1). We demonstrate that each Riemannian space with a maximally symmetric metric admits an almost simply transitive action of a Lie group with triangular radical (Theorem 2). We apply this result to studying the isometry groups of solvmanifolds and, in particular, solvable Lie groups with some invariant Riemannian metric.