A note on optimal Hermite interpolation in Sobolev spaces

被引:0
|
作者
Guiqiao Xu
Xiaochen Yu
机构
[1] Tianjin Normal University,Department of Mathematics
关键词
Optimal Hermite interpolation; Sobolev space; Worst-case setting; 41A05; 41A25; 41A46;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the optimal Hermite interpolation of Sobolev spaces W∞n[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W_{\infty }^{n}[a,b]$\end{document}, n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\in \mathbb{N}$\end{document} in space L∞[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\infty }[a,b]$\end{document} and weighted spaces Lp,ω[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p,\omega }[a,b]$\end{document}, 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\le p< \infty $\end{document} with ω a continuous-integrable weight function in (a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(a,b)$\end{document} when the amount of Hermite data is n. We proved that the Lagrange interpolation algorithms based on the zeros of polynomial of degree n with the leading coefficient 1 of the least deviation from zero in L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\infty }$\end{document} (or Lp,ω[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p,\omega }[a,b]$\end{document}, 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\le p<\infty $\end{document}) are optimal for W∞n[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W_{\infty }^{n}[a,b]$\end{document} in L∞[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\infty }[a,b]$\end{document} (or Lp,ω[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p,\omega }[a,b]$\end{document}, 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\le p<\infty $\end{document}). We also give the optimal Hermite interpolation algorithms when we assume the endpoints are included in the interpolation systems.
引用
收藏
相关论文
共 50 条
  • [1] A note on optimal Hermite interpolation in Sobolev spaces
    Xu, Guiqiao
    Yu, Xiaochen
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [2] Hardy-Sobolev spaces associated with Hermite expansions and interpolation
    Huang, Jizheng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 157 : 104 - 122
  • [3] Hermite interpolation and Sobolev orthogonality
    García-Caballero, EM
    Pérez, TE
    Piñar, MA
    ACTA APPLICANDAE MATHEMATICAE, 2000, 61 (1-3) : 87 - 99
  • [4] Estimate of the Norm of the Hermite—Fejér Interpolation Operator in Sobolev Spaces
    A. I. Fedotov
    Mathematical Notes, 2019, 105 : 905 - 916
  • [5] Hermite Interpolation and Sobolev Orthogonality
    Esther M. García-Caballero
    Teresa E. Pérez
    Miguel A. Piñar
    Acta Applicandae Mathematica, 2000, 61 : 87 - 99
  • [6] SAMPLE NUMBERS AND OPTIMAL LAGRANGE INTERPOLATION IN SOBOLEV SPACES
    Xu, Guiqiao
    Wang, Hui
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (01) : 347 - 361
  • [7] A note on Hermite interpolation
    Jakimovski, A.
    Leviatan, D.
    JAEN JOURNAL ON APPROXIMATION, 2018, 10 (01): : 147 - 153
  • [8] A note on the Hermite interpolation
    Mircea Ivan
    Numerical Algorithms, 2015, 69 : 517 - 522
  • [9] A note on the Hermite interpolation
    Ivan, Mircea
    NUMERICAL ALGORITHMS, 2015, 69 (03) : 517 - 522
  • [10] A Note on Modified Hermite Interpolation
    R. Kozera
    M. Wilkołazka
    Mathematics in Computer Science, 2020, 14 : 223 - 239