Asymptotic Optimality of Scalar Gersho Quantizers

被引:0
|
作者
Wolfgang Kreitmeier
机构
[1] University of Passau,Department of Informatics and Mathematics
来源
关键词
Asymptotically optimal quantization; Quantization error; Scalar quantization; Gersho quantizer; High rate quantization; 41A29; 68P30; 94A12; 94A29;
D O I
暂无
中图分类号
学科分类号
摘要
In his famous paper (Gersho, IEEE Trans. Inf. Theory 25(4):373–380, 1979), Gersho stressed that the codecells of optimal quantizers asymptotically make an equal contribution to the distortion of the quantizer. Motivated by this fact, we investigate in this paper quantizers in the scalar case, where each codecell contributes with exactly the same portion to the quantization error. We show that such quantizers of Gersho type—or Gersho quantizers for short—exist for nonatomic scalar distributions. As a main result, we prove that Gersho quantizers are asymptotically optimal.
引用
收藏
页码:365 / 396
页数:31
相关论文
共 50 条
  • [1] Asymptotic Optimality of Scalar Gersho Quantizers
    Kreitmeier, Wolfgang
    CONSTRUCTIVE APPROXIMATION, 2013, 38 (03) : 365 - 396
  • [2] Asymptotic distribution of the errors in scalar and vector quantizers
    Lee, DH
    Neuhoff, DL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (02) : 446 - 460
  • [3] Designing Scalar Quantizers with Secrecy Constraints
    Almeida, Joao
    Maierbacher, Gerhard
    Barros, Joao
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 237 - 240
  • [4] On the Optimality of Sufficient Statistics-Based Quantizers
    Dulek, Berkan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3567 - 3573
  • [5] DESIGN OF MULTIPLE DESCRIPTION SCALAR QUANTIZERS
    VAISHAMPAYAN, VA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) : 821 - 834
  • [6] Distributed scalar quantizers for Gaussian channels
    Wernersson, Niklas
    Karlsson, Johannes
    Skoglund, Mikael
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 1741 - 1745
  • [7] On L∞ Properties of Multiresolution Scalar Quantizers
    Sarshar, Nima
    Wu, Xiaolin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (11) : 5805 - 5810
  • [8] Distributed scalar quantizers for noisy channels
    Karlsson, Johannes
    Wernersson, Niklas
    Skoglund, Mikael
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS, 2007, : 633 - +
  • [9] Distributed Scalar Quantizers for Subband Allocation
    Boyle, Bradford D.
    Walsh, John MacLaren
    Weber, Steven
    2014 48TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2014,
  • [10] On the optimality of embedded deadzone scalar-quantizers for wavelet-based L-infinite-constrained image coding
    Alecu, A
    Munteanu, A
    Cornelis, J
    Dewitte, S
    Schelkens, P
    IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (03) : 367 - 370