An improved Hurst parameter estimator based on fractional Fourier transform

被引:6
|
作者
YangQuan Chen
Rongtao Sun
Anhong Zhou
机构
[1] Utah State University,Center for Self
[2] Phase Dynamics,Organizing and Intelligent Systems (CSOIS), Department of Electrical and Computer Engineering
[3] Inc.,Department of Biological and Irrigational Engineering
[4] Utah State University,undefined
来源
Telecommunication Systems | 2010年 / 43卷
关键词
Fractional Fourier transform; Fractional Gaussian noise; Hurst parameter; Long-range dependence; Wavelets;
D O I
暂无
中图分类号
学科分类号
摘要
A fractional Fourier transform (FrFT) based estimation method is introduced in this paper to analyze the long range dependence (LRD) in time series. The degree of LRD can be characterized by the Hurst parameter. The FrFT-based estimation of Hurst parameter proposed in this paper can be implemented efficiently allowing very large data set. We used fractional Gaussian noises (FGN) which typically possesses long-range dependence with known Hurst parameters to test the accuracy of the proposed Hurst parameter estimator. For justifying the advantage of the proposed estimator, some other existing Hurst parameter estimation methods, such as wavelet-based method and a global estimator based on dispersional analysis, are compared. The proposed estimator can process the very long experimental time series locally to achieve a reliable estimation of the Hurst parameter.
引用
收藏
页码:197 / 206
页数:9
相关论文
共 50 条
  • [1] An improved Hurst parameter estimator based on fractional Fourier transform
    Chen, YangQuan
    Sun, Rongtao
    Zhou, Anhong
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2007, VOL 5, PTS A-C,, 2008, : 1223 - 1233
  • [2] An improved Hurst parameter estimator based on fractional Fourier transform
    Chen, YangQuan
    Sun, Rongtao
    Zhou, Anhong
    [J]. TELECOMMUNICATION SYSTEMS, 2010, 43 (3-4) : 197 - 206
  • [3] Fourier transform and Bayes estimator of a location parameter
    Angers, JF
    [J]. STATISTICS & PROBABILITY LETTERS, 1996, 29 (04) : 353 - 359
  • [4] Parameter diagrams for the fractional Fourier transform
    Sillitto, W
    [J]. JOURNAL OF MODERN OPTICS, 2001, 48 (03) : 459 - 492
  • [5] Improved discrete fractional Fourier transform
    Pei, SC
    Yeh, MH
    [J]. OPTICS LETTERS, 1997, 22 (14) : 1047 - 1049
  • [6] Hurst parameter estimator based on a decomposition by aggregated series
    Estrada, L.
    Torres, D.
    Ramirez, J.
    [J]. 18TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND COMPUTERS (CONIELECOMP 2008), PROCEEDINGS, 2008, : 171 - 176
  • [7] A Note on Wavelet-Based Estimator of the Hurst Parameter
    Wu, Liang
    [J]. ENTROPY, 2020, 22 (03)
  • [8] The multiple-parameter fractional Fourier transform
    Lang Jun
    Tao Ran
    Ran Qiwen
    Wang Yue
    [J]. SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2008, 51 (08): : 1010 - 1024
  • [9] Improved Spectral Representation for Birdcall Based on Fractional Fourier Transform
    尹辉
    谢湘
    匡镜明
    [J]. Journal of Beijing Institute of Technology, 2008, 17 (04) : 472 - 477
  • [10] Improved weighted fractional Fourier transform based on frequency hopping
    Xu, Ruiyang
    Da, Xinyu
    Liang, Yuan
    Hu, Hang
    [J]. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47 (02): : 30 - 35