A unified framework for a posteriori error estimation for the Stokes problem
被引:0
|
作者:
Antti Hannukainen
论文数: 0引用数: 0
h-index: 0
机构:Aalto University,Department of Mathematics and Systems Analysis
Antti Hannukainen
Rolf Stenberg
论文数: 0引用数: 0
h-index: 0
机构:Aalto University,Department of Mathematics and Systems Analysis
Rolf Stenberg
Martin Vohralík
论文数: 0引用数: 0
h-index: 0
机构:Aalto University,Department of Mathematics and Systems Analysis
Martin Vohralík
机构:
[1] Aalto University,Department of Mathematics and Systems Analysis
[2] UPMC Univ. Paris 06,Laboratoire Jacques
[3] UMR 7598,Louis Lions
[4] CNRS,Laboratoire Jacques
[5] UMR 7598,Louis Lions
来源:
Numerische Mathematik
|
2012年
/
122卷
关键词:
65N15;
76M12;
76S05;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, a unified framework for a posteriori error estimation for the Stokes problem is developed. It is based on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[H^1_0(\Omega )]^d$$\end{document}-conforming velocity reconstruction and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\underline{\boldsymbol{H}}(\mathrm{div},\Omega )$$\end{document}-conforming, locally conservative flux (stress) reconstruction. It gives guaranteed, fully computable global upper bounds as well as local lower bounds on the energy error. In order to apply this framework to a given numerical method, two simple conditions need to be checked. We show how to do this for various conforming and conforming stabilized finite element methods, the discontinuous Galerkin method, the Crouzeix–Raviart nonconforming finite element method, the mixed finite element method, and a general class of finite volume methods. The tools developed and used include a new simple equilibration on dual meshes and the solution of local Poisson-type Neumann problems by the mixed finite element method. Numerical experiments illustrate the theoretical developments.