On the number of p-hypergeometric solutions of KZ equations

被引:0
|
作者
Alexander Varchenko
机构
[1] University of North Carolina at Chapel Hill,Department of Mathematics
[2] Lomonosov Moscow State University,Faculty of Mathematics and Mechanics
来源
The Ramanujan Journal | 2023年 / 62卷
关键词
equations; Master polynomials; -Hypergeometric solutions; Primary 11D79; Secondary 32G34; 33C60; 33E50;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that solutions of the KZ equations can be written in the form of multidimensional hypergeometric integrals. In 2017 in a joint paper of the author with V. Schechtman, the construction of hypergeometric solutions was modified, and solutions of the KZ equations modulo a prime number p were constructed. These solutions modulo p, called the p-hypergeometric solutions, are polynomials with integer coefficients. A general problem is to determine the number of independent p-hypergeometric solutions and understand the meaning of that number. In this paper, we consider the KZ equations associated with the space of singular vectors of weight n-2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2r$$\end{document} in the tensor power W⊗n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{\otimes n}$$\end{document} of the vector representation of sl2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {sl}_2$$\end{document}. In this case the hypergeometric solutions of the KZ equations are given by r-dimensional hypergeometric integrals. We consider the module of the corresponding p-hypergeometric solutions, determine its rank, and show that the rank is equal to the dimension of the space of suitable square integrable differential r-forms.
引用
收藏
页码:307 / 327
页数:20
相关论文
共 50 条
  • [1] On the number of p-hypergeometric solutions of KZ equations
    Varchenko, Alexander
    RAMANUJAN JOURNAL, 2023, 62 (01): : 307 - 327
  • [2] Hypergeometric solutions of trigonometric KZ equations satisfy dynamical difference equations
    Markov, Y
    Varchenko, A
    ADVANCES IN MATHEMATICS, 2002, 166 (01) : 100 - 147
  • [3] Solutions of KZ differential equations modulo p
    Vadim Schechtman
    Alexander Varchenko
    The Ramanujan Journal, 2019, 48 : 655 - 683
  • [4] Solutions of KZ differential equations modulo p
    Schechtman, Vadim
    Varchenko, Alexander
    RAMANUJAN JOURNAL, 2019, 48 (03): : 655 - 683
  • [5] A note on generalized hypergeometric functions, KZ solutions, and gluon amplitudes
    Abe, Yasuhiro
    NUCLEAR PHYSICS B, 2016, 907 : 107 - 153
  • [6] Hypergeometric solutions of soliton equations
    Orlov, AY
    Scherbin, DM
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 128 (01) : 906 - 926
  • [7] Hypergeometric Solutions of Soliton Equations
    A. Yu. Orlov
    D. M. Scherbin
    Theoretical and Mathematical Physics, 2001, 128 : 906 - 926
  • [8] Hypergeometric solutions to Schwarzian equations
    Besrour, Khalil
    Sebbar, Abdellah
    RAMANUJAN JOURNAL, 2024, 65 (03): : 1113 - 1121
  • [9] On solutions of the KZ and qKZ equations at level zero
    Nakayashiki, A
    Pakuliak, S
    Tarasov, V
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1999, 71 (04): : 459 - 496
  • [10] Congruences for Hasse-Witt matrices and solutions of p-adic KZ equations
    Varchenko, Alexander
    Zudilin, Wadim
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (01) : 565 - 597