Anomalous diffusion in a model with a variable percolation radius

被引:0
|
作者
Martynenko M.V. [1 ]
Udodov V.N. [1 ]
Potekaev A.I. [1 ]
机构
[1] N. F. Katanov State University, Khakassia
关键词
Boundary Condition; Average Rate; Periodic Boundary; Diffusion Model; Periodic Boundary Condition;
D O I
10.1023/A:1009445119537
中图分类号
学科分类号
摘要
Anomalous diffusion models for random 1-D cluster and comb structures of length L = 100 with finite fingers and different boundary conditions are considered. The effect of electric field on anomalous diffusion is discussed. The cases with different percolation radii are compared. The comb-structure model with periodic boundary conditions is shown to be useful in studying various types of anomalous diffusion. A new diffusion type, where the average rate is higher than the typical rate, is predicted. Physical causes for this diffusion are revealed. © 2000 Plenum Publishing Corporation.
引用
收藏
页码:867 / 870
页数:3
相关论文
共 50 条
  • [1] ANOMALOUS DIFFUSION AND DRIFT IN THE COMB MODEL OF PERCOLATION CLUSTERS
    ARKHINCHEEV, VE
    BASKIN, EM
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1991, 100 (01): : 292 - 300
  • [2] PERCOLATION, FRACTALS, AND ANOMALOUS DIFFUSION
    AHARONY, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 34 (5-6) : 931 - 939
  • [3] ANOMALOUS DIFFUSION AND CONTINUUM PERCOLATION
    WAGNER, N
    BALBERG, I
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1987, 49 (1-2) : 369 - 382
  • [4] A model for anomalous directed percolation
    Hinrichsen, H
    Howard, M
    [J]. EUROPEAN PHYSICAL JOURNAL B, 1999, 7 (04): : 635 - 643
  • [5] A model for anomalous directed percolation
    H. Hinrichsen
    M. Howard
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 1999, 7 : 635 - 643
  • [6] A VARIABLE-ORDER FRACTAL DERIVATIVE MODEL FOR ANOMALOUS DIFFUSION
    Liu, Xiaoting
    Sun, Hong-Guang
    Lazarevic, Mihailo P.
    Fu, Zhuojia
    [J]. THERMAL SCIENCE, 2017, 21 (01): : 51 - 59
  • [7] FRACTAL GEOMETRY AND ANOMALOUS DIFFUSION IN THE BACKBONE OF PERCOLATION CLUSTERS
    PUECH, L
    RAMMAL, R
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (35): : 1197 - 1202
  • [8] Anomalous diffusion at percolation threshold in high dimensions on 1018 sites
    Osterkamp, D
    Stauffer, D
    Aharony, A
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (07): : 917 - 924
  • [9] Stochastic Loewner evolution relates anomalous diffusion and anisotropic percolation
    Credidio, Heitor F.
    Moreira, Andre A.
    Herrmann, Hans J.
    Andrade, Jose S., Jr.
    [J]. PHYSICAL REVIEW E, 2016, 93 (04)
  • [10] HIERARCHICAL PERCOLATION MODEL WITH ANOMALOUS MULTIFRACTAL MEASURE
    NAGATANI, T
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (08): : L441 - L447