The standard embedding of the Lie algebra V ect(S1) of smooth vector fields on the circle V ect(S1) into the Lie algebra ΨD(S1) of pseudodifferential symbols on S1 identifies vector field \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f(x)\,\frac{\partial }{{\partial x}}\, \in \,Vect\,({S^1})$$\end{document} and its dual as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi \,(f(x)\frac{\partial }{{\partial x}})\, = \,f\,(x)\,\xi \,\pi (u(x)d{x^2})\, = \,u\,(x){\xi ^2}.$$\end{document} The space of symbols can be viewed as the space of functions on T*S1. The natural lift of the action of Diff(S1) yields Diff(S1)-module. In this paper we demonstate this construction to yield several examples of dispersionless integrable systems. Using Ovsienko and Roger method for nontrivial deformation of the standard embedding of V ect(S1) into ΨD(S1) we obtain the celebrated Hunter-Saxton equation. Finally, we study the Moyal quantization of all such systems to construct noncommutative systems.