Sharp Estimates of Noncommutative Bochner–Riesz Means on Two-Dimensional Quantum Tori

被引:0
|
作者
Xudong Lai
机构
[1] Harbin Institute of Technology,Institute for Advanced Study in Mathematics
来源
Communications in Mathematical Physics | 2022年 / 390卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish the full Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document} boundedness of noncommutative Bochner–Riesz means on two-dimensional quantum tori, which completely resolves an open problem raised in Chen et al. (Commun Math Phys 322(3):755–805, 2013) in the sense of the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document} convergence for two dimensions. The main ingredients are sharp estimates of noncommutative Kakeya maximal functions and geometric estimates in the plane. We make the most of noncommutative theories of maximal/square functions, together with microlocal decompositions in both proofs of sharper estimates of Kakeya maximal functions and Bochner–Riesz means.
引用
收藏
页码:193 / 230
页数:37
相关论文
共 50 条