Analytical analysis of impacts of nanoparticle shapes and uncertainty in thermophysical properties on optimum operating conditions of MHD nanofluid flow in a microchannel filled with porous medium

被引:0
|
作者
Estrada, Rodolfo [1 ]
Ibanez, Guillermo [1 ]
Lopez, Aracely [1 ]
Lastres, Orlando [1 ]
Pantoja, Joel [1 ]
Reyes, Juan [1 ]
机构
[1] Univ Ciencias & Artes Chiapas, Tuxtla Gutierrez, Chiapas, Mexico
关键词
MHD nanofluid flow; Nanoparticle shape; Porous medium; Optimization; Microchannel; Entropy minimization;
D O I
10.1007/s10973-023-12678-0
中图分类号
O414.1 [热力学];
学科分类号
摘要
The effects of different nanoparticle shapes and uncertainty in the nanofluid thermophysical properties on the optimal operating conditions of MHD flow of Al2O3/water nanofluid through a horizontal microchannel with a porous medium considering hydrodynamic slip, suction/injection and thermal radiation were investigated. The momentum and heat transfer equations were solved analytically using the methods of undetermined coefficients and variation of constants, respectively. From the exact solutions of the velocity and temperature fields, the global entropy S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\langle {\text{S}} \right\rangle$$\end{document} and Nusselt number Nu were computed. The impacts of hydrodynamic slip alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}, Biot number Bi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Bi$$\end{document}, nanoparticle concentration phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} and Darcy number Da\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Da$$\end{document} on entropy production and heat transport were investigated. The results revealed that optimum values of Bi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{\text{Bi}}$$\end{document} and alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} with minimum global entropy and maximum heat transport were achieved for symmetric slip conditions and asymmetric heat transfer. The platelet shape of nanoparticles was the most effective to achieve the optimum conditions with the lowest minimum value of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\langle {\text{S}} \right\rangle$$\end{document} , while the blade shape was the most effective to reach the optimum conditions with the highest maximum value of heat transport. Thus, optimum values of both Biot number of bottom plate equal to 0.01 and slip equal to 0. 045 with the smallest values of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\langle {\text{S}} \right\rangle$$\end{document} were achieved for the platelet shape. Also, optimum slip value of 0.15 with the largest maximum Nu at top plate of 5.13 was achieved for the blade shape. On the other hand, when phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} increased from 0 to 0.045, S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\langle {\text{S}} \right\rangle$$\end{document} always decreased and Nu always increased. The greatest decrease of entropy from 0.133 to 0.088 (33%) occurred for the platelet shape, while the greatest increase of Nu at top plate from 4.96 to 5.57 (12.3%) occurred for the blade shape. When phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} was varied from 0 to 0.01, S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\langle {\text{S}} \right\rangle$$\end{document} decreased 9.2% for the platelet shape compared to spherical shapes, and Nu at top plate increased 2.6% for the blade shape compared to spherical shapes. The results also indicated that the greatest variations of optimum operating conditions occurred when the experimental correlations of viscosity and thermal conductivity were used compared to theoretical correlations. This is because the estimated values of viscosity and conductivity using the different theoretical correlations differ very little from each other. Thus, the maximum value of Nu at top plate increased from 5.067 for SM1 model to 5.092 for SM6 model (0.5%), while it increased from 4.96 for EM3 model to 5.17 for EM6 model (4.2%). Finally, the effects of Al2O3, Cu and TiO2 nanoparticles in water as base fluid on the optimum conditions were investigated. Both the lowest entropy production and the highest heat transfer were reached for Cu nanoparticles. When alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} was varied, the minimum value of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\langle {\text{S}} \right\rangle$$\end{document} achieved for Cu was 0.47 and 0.64% lower than the minimum value of TiO2 and Al2O3, respectively. Also, the maximum value of Nu achieved for Cu improved by approximately 0.2 and 0. 4% compared to Al2O3 and TiO2, respectively.
引用
收藏
页码:265 / 298
页数:34
相关论文
共 9 条
  • [1] Analytical solution of MHD flow and heat transfer over a permeable nonlinearly stretching sheet in a porous medium filled by a nanofluid
    Sayehvand, Habib-Olah
    Parsa, Amir Basiri
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2016, 4 (01): : 70 - 98
  • [2] Energy Transfer in Mixed Convection MHD Flow of Nanofluid Containing Different Shapes of Nanoparticles in a Channel Filled with Saturated Porous Medium
    Aaiza, Gul
    Khan, Ilyas
    Shafie, Sharidan
    NANOSCALE RESEARCH LETTERS, 2015, 10 : 1 - 14
  • [3] Energy Transfer in Mixed Convection MHD Flow of Nanofluid Containing Different Shapes of Nanoparticles in a Channel Filled with Saturated Porous Medium
    Gul Aaiza
    Ilyas Khan
    Sharidan Shafie
    Nanoscale Research Letters, 2015, 10
  • [4] Entropy Generation Analysis of MHD Slip Flow of Non-Newtonian Cu-Casson Nanofluid in a Porous Microchannel Filled with Saturated Porous Medium Considering Thermal Radiation
    Das, S.
    Sarkar, S.
    Jana, R. N.
    JOURNAL OF NANOFLUIDS, 2018, 7 (06) : 1217 - 1232
  • [5] Flow and heat transfer analysis of MHD ternary hybrid nanofluid flow through a vertical porous microchannel with slip boundary conditions
    Hema, S.
    Venkatesh, P.
    Gireesha, B. J.
    Pavithra, C. G.
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2025, 8 (03)
  • [6] Optimization of MHD nanofluid flow in a vertical microchannel with a porous medium, nonlinear radiation heat flux, slip flow and convective–radiative boundary conditions
    Guillermo Ibáñez
    Aracely López
    Imer López
    Joel Pantoja
    Joel Moreira
    Orlando Lastres
    Journal of Thermal Analysis and Calorimetry, 2019, 135 : 3401 - 3420
  • [7] Optimization of MHD nanofluid flow in a vertical microchannel with a porous medium, nonlinear radiation heat flux, slip flow and convective-radiative boundary conditions
    Ibanez, Guillermo
    Lopez, Aracely
    Lopez, Imer
    Pantoja, Joel
    Moreira, Joel
    Lastres, Orlando
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 135 (06) : 3401 - 3420
  • [8] Impacts of nanoparticle shapes on Ag-water nanofluid thin film flow through a porous medium with thermal radiation and ohmic heating
    Gomathy, G.
    Kumar, B. Rushi
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (13) : 6877 - 6895
  • [9] Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions
    Lopez, Aracely
    Ibanez, Guillermo
    Pantoja, Joel
    Moreira, Joel
    Lastres, Orlando
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 107 : 982 - 994