Convergence of Discrete-Velocity Schemes for the Boltzmann Equation

被引:0
|
作者
Stéphane Mischler
机构
[1] Départment de Mathématiques,
[2] Université de Versailles-Saint-Quentin,undefined
[3] Bâtiment Fermat,undefined
[4] 45,undefined
[5] avenue des États-Unis,undefined
[6] 78055 Versailles Cedex,undefined
关键词
Continuous Equation; Boltzmann Equation; Velocity Average; Discretized Equation; Collision Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the convergence of two discrete-velocity deterministic schemes for the Boltzmann equation, namely, Buet's scheme and a new finite-volume scheme that we introduce here. We write the discretized equation in the form of a Boltzmann continuous equation in order to be in the framework of the DiPerna-Lions theory of renormalized solutions. In order to prove convergence we have to overcome two difficulties: the convergence of the discretized collision kernel is very weak and the lemma on the compactness of velocity averages can be recovered only asymptotically when the parameter of discretization tends to zero.
引用
收藏
页码:53 / 77
页数:24
相关论文
共 50 条