Integral Representations for Continuous Linear Functionals in Operator-Initiated Topologies

被引:0
|
作者
Walter Roth
机构
[1] Universiti Brunei Darussalam,Department of Mathematics
来源
Positivity | 2002年 / 6卷
关键词
locally convex cones; positive linear functionals;
D O I
暂无
中图分类号
学科分类号
摘要
On a given cone (resp. vector space) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{Q}$$ \end{document} we consider an initial topology and order induced by a family of linear operators into a second cone \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document} which carries a locally convex topology. We prove that monotone linear functionals on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{Q}$$ \end{document} which are continuous with respect to this initial topology may be represented as certain integrals of continuous linear functionals on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document}. Based on the Riesz representation theorem from measure theory, we derive an integral version of the Jordan decomposition for linear functionals on ordered vector spaces.
引用
收藏
页码:115 / 127
页数:12
相关论文
共 50 条