Regularity properties of isometric immersions

被引:0
|
作者
Stefan Müller
Mohammad Reza Pakzad
机构
[1]  ,Max Planck Institute for Mathematics in the Sciences
[2] University of British Columbia,Department of Mathematics
来源
Mathematische Zeitschrift | 2005年 / 251卷
关键词
Sobolev Space; Function Versus; Scalar Function; Regularity Property; Isometric Immersion;
D O I
暂无
中图分类号
学科分类号
摘要
We show that an isometric immersion y from a two-dimensional domain S with C1,α boundary to ℝ3 which belongs to the critical Sobolev space W2,2 is C1 up to the boundary. More generally C1 regularity up to the boundary holds for all scalar functions V ∈ W2,2(S) which satisfy det ∇2V=0. If S has only Lipschitz boundary we show such V can be approximated in W2,2 by functions Vk ∈ W1,∞∩W2,2 with det ∇2Vk=0.
引用
收藏
页码:313 / 331
页数:18
相关论文
共 50 条