Double weighted sum formulas of multiple zeta values

被引:0
|
作者
Minking Eie
Wen-Chin Liaw
Chuan-Sheng Wei
机构
[1] National Chung Cheng University,Department of Mathematics
[2] Feng Chia University,Department of Applied Mathematics
关键词
Multiple zeta values; Shuffle product; Weighted sum formula ; Drinfeld integral; Primary 40A25; 40B05; Secondary 11M99; 33E99;
D O I
暂无
中图分类号
学科分类号
摘要
For positives integers α1,α2,…,αr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{1}, \alpha _{2}, \ldots , \alpha _{r}$$\end{document} with αr≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{r} \ge 2$$\end{document}, the multiple zeta value or r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-fold Euler sum ζ(α1,α2,…,αr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (\alpha _{1}, \alpha _{2}, \ldots , \alpha _{r})$$\end{document} is defined by the multiple series ∑1≤n1<n2<⋯<nrn1-α1n2-α2…nr-αr.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{1 \le n_{1} < n_{2} < \cdots < n_{r}} n_{1}^{-\alpha _{1}} n_{2}^{-\alpha _{2}} \ldots n_{r}^{-\alpha _{r}}. \end{aligned}$$\end{document}In this paper, for integers k,r≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k,r\ge 0$$\end{document} and complex numbers μ,λ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ,\lambda ,$$\end{document} we consider the double weighted sum defined by Ek,r(μ,λ)=∑p+q=kμp∑α=q+r+3ζ(1p,α0,…,αq,αq+1+1)λαq+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} E_{k,r}(\mu ,\lambda )=\sum _{p+q=k}\mu ^{p}\sum _{\left| \alpha \right| =q+r+3}\zeta ({\left\{ 1 \right\} ^{p},\alpha _{0},\ldots ,\alpha _{q},\alpha _{q+1}+1})\lambda ^{\alpha _{q+1}} \end{aligned}$$\end{document}and then evaluate Ek,r(2,2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{k,r}(2,2),$$\end{document}Ek,r(2,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{k,r}(2,1),$$\end{document}Ek,r(1,2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{k,r}(1,2),$$\end{document}Ek,r(1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{k,r}(1,1)$$\end{document} and Ek,r(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{k,r}(0,1)$$\end{document} in terms of the special values at positive integers of the Riemann zeta function. Note that Ek,r(0,1)=∑α=k+r+3ζ(α0,…,αk,αk+1+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} E_{k,r}(0,1)=\sum _{\left| \alpha \right| =k+r+3}\zeta (\alpha _{0},\ldots ,\alpha _{k},\alpha _{k+1}+1) \end{aligned}$$\end{document}so our results cover the sum formula ∑α=k+r+3ζ(α0,…,αk,αk+1+1)=ζ(k+r+4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{\left| \alpha \right| =k+r+3}\zeta (\alpha _{0},\ldots ,\alpha _{k},\alpha _{k+1}+1)=\zeta (k+r+4) \end{aligned}$$\end{document}proved by Granville in 1996.
引用
收藏
页码:23 / 41
页数:18
相关论文
共 50 条
  • [1] Double weighted sum formulas of multiple zeta values
    Eie, Minking
    Liaw, Wen-Chin
    Wei, Chuan-Sheng
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2015, 85 (01): : 23 - 41
  • [2] Several weighted sum formulas of multiple zeta values
    Eie, Minking
    Liaw, Wen-Chin
    Ong, Yao Lin
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (09) : 2253 - 2264
  • [3] On Vectorized Weighted Sum Formulas of Multiple Zeta Values
    Chung, Chan-Liang
    Ong, Yao Lin
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (02): : 243 - 261
  • [4] Weighted sum formulas for symmetric multiple zeta values
    Kento Fujita
    Yasushi Komori
    [J]. The Ramanujan Journal, 2023, 60 : 141 - 155
  • [5] Weighted sum formulas for finite multiple zeta values
    Kamano, Ken
    [J]. JOURNAL OF NUMBER THEORY, 2018, 192 : 168 - 180
  • [6] Weighted sum formulas for symmetric multiple zeta values
    Fujita, Kento
    Komori, Yasushi
    [J]. RAMANUJAN JOURNAL, 2023, 60 (01): : 141 - 155
  • [7] Families of weighted sum formulas for multiple zeta values
    Guo, Li
    Lei, Peng
    Zhao, Jianqiang
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (03) : 997 - 1025
  • [8] ON GENERALIZATIONS OF WEIGHTED SUM FORMULAS OF MULTIPLE ZETA VALUES
    Ong, Yao Lin
    Eie, Minking
    Liaw, Wen-Chin
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (05) : 1185 - 1198
  • [9] Weighted sum formulas of multiple zeta values with even arguments
    Li, Zhonghua
    Qin, Chen
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (3-4) : 1337 - 1356
  • [10] NEW FAMILIES OF WEIGHTED SUM FORMULAS FOR MULTIPLE ZETA VALUES
    Yuan, Haiping
    Zhao, Jianqiang
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2015, 45 (06) : 2065 - 2096