Stability of Singular Fractional Systems of Nonlinear Integro-Differential Equations

被引:0
|
作者
Amele Taïeb
机构
[1] UMAB University of Mostaganem,LPAM, Faculty ST
来源
关键词
Caputo derivative; fixed point; singular fractional integro-differential equation; existence and uniqueness; Ulam-Hyers stability;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study singular fractional systems of nonlinear integro-differential equations. We investigate the existence and uniqueness of solutions by means of Schauder fixed point theorem and using the contraction mapping principle. Moreover, we define and study the Ulam-Hyers stability and the generalized Ulam-Hyers stability of solutions. Some applications are presented to illustrate the main results.
引用
收藏
页码:219 / 229
页数:10
相关论文
共 50 条
  • [1] Stability of Singular Fractional Systems of Nonlinear Integro-Differential Equations
    Taieb, Amele
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (02) : 219 - 229
  • [2] Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations
    Heydari, M. H.
    Hooshmandasl, M. R.
    Mohammadi, F.
    Cattani, C.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (01) : 37 - 48
  • [3] A block-by-block strategy for fractional systems of nonlinear weakly singular integro-differential equations
    Afiatdoust, F.
    Heydari, M. H.
    Hosseini, M. M.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06):
  • [4] A block-by-block strategy for fractional systems of nonlinear weakly singular integro-differential equations
    F. Afiatdoust
    M. H. Heydari
    M. M. Hosseini
    [J]. Computational and Applied Mathematics, 2023, 42
  • [5] SOLVABILITY AND STABILITY FOR NONLINEAR FRACTIONAL INTEGRO-DIFFERENTIAL SYSTEMS OF HIGHT FRACTIONAL ORDER
    Dahmani, Zoubir
    Taieb, Amele
    Bedjaoui, Nabil
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (03): : 629 - 644
  • [6] Nonlinear Singular Integro-Differential Equations with an Arbitrary Parameter
    S. N. Askhabov
    [J]. Mathematical Notes, 2018, 103 : 18 - 23
  • [7] Nonlinear Singular Integro-Differential Equations with an Arbitrary Parameter
    Askhabov, S. N.
    [J]. MATHEMATICAL NOTES, 2018, 103 (1-2) : 18 - 23
  • [8] Efficient method for solving nonlinear weakly singular kernel fractional integro-differential equations
    Ameen, Ismail Gad
    Baleanu, Dumitru
    Hussien, Hussien Shafei
    [J]. AIMS MATHEMATICS, 2024, 9 (06): : 15819 - 15836
  • [9] An approximate approach for fractional singular delay integro-differential equations
    Peykrayegan, Narges
    Ghovatmand, Mehdi
    Skandari, Mohammad Hadi Noori
    Baleanu, Dumitru
    [J]. AIMS MATHEMATICS, 2022, 7 (05): : 9156 - 9171
  • [10] Existence of solutions for nonlinear fractional integro-differential equations
    Bragdi, Ahmed
    Frioui, Assia
    Lakoud, Assia Guezane
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)