A Dirichlet Regression Model for Compositional Data with Zeros

被引:23
|
作者
Tsagris M. [1 ]
Stewart C. [2 ]
机构
[1] Department of Computer Science, University of Crete, Heraklion Crete
[2] Department of Mathematics and Statistics, University of New Brunswick, Saint John, NB
基金
加拿大自然科学与工程研究理事会;
关键词
Compositional data; Dirichlet distribution; regression; zero values;
D O I
10.1134/S1995080218030198
中图分类号
学科分类号
摘要
Compositional data are met in many different fields, such as economics, archaeometry, ecology, geology and political sciences. Regression where the dependent variable is a composition is usually carried out via a log-ratio transformation of the composition or via the Dirichlet distribution. However, when there are zero values in the data these two ways are not readily applicable. Suggestions for this problem exist, but most of them rely on substituting the zero values. In this paper we adjust the Dirichlet distribution when covariates are present, in order to allow for zero values to be present in the data, without modifying any values. To do so, we modify the log-likelihood of the Dirichlet distribution to account for zero values. Examples and simulation studies exhibit the performance of the zero adjusted Dirichlet regression. © 2018, Pleiades Publishing, Ltd.
引用
收藏
页码:398 / 412
页数:14
相关论文
共 50 条
  • [1] Spatial Regression Modeling for Compositional Data With Many Zeros
    Thomas J. Leininger
    Alan E. Gelfand
    Jenica M. Allen
    John A. Silander
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2013, 18 : 314 - 334
  • [2] Spatial Regression Modeling for Compositional Data With Many Zeros
    Leininger, Thomas J.
    Gelfand, Alan E.
    Allen, Jenica M.
    Silander, John A., Jr.
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2013, 18 (03) : 314 - 334
  • [3] A latent Gaussian model for compositional data with zeros
    Butler, Adam
    Glasbey, Chris
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2008, 57 : 505 - 520
  • [4] Zero-inflated generalized Dirichlet multinomial regression model for microbiome compositional data analysis
    Tang, Zheng-Zheng
    Chen, Guanhua
    [J]. BIOSTATISTICS, 2019, 20 (04) : 698 - 713
  • [5] A composite Bayesian hierarchical model of compositional data with zeros
    Napier, Gary
    Neocleous, Tereza
    Nobile, Agostino
    [J]. JOURNAL OF CHEMOMETRICS, 2015, 29 (02) : 96 - 108
  • [6] Clustering compositional data using Dirichlet mixture model
    Pal, Samyajoy
    Heumann, Christian
    [J]. PLOS ONE, 2022, 17 (05):
  • [7] A Bayesian zero-inflated Dirichlet-multinomial regression model for multivariate compositional count data
    Koslovsky, Matthew D. D.
    [J]. BIOMETRICS, 2023, 79 (04) : 3239 - 3251
  • [8] Flexible non-parametric regression models for compositional response data with zeros
    Tsagris, Michail
    Alenazi, Abdulaziz
    Stewart, Connie
    [J]. STATISTICS AND COMPUTING, 2023, 33 (05)
  • [9] Flexible non-parametric regression models for compositional response data with zeros
    Michail Tsagris
    Abdulaziz Alenazi
    Connie Stewart
    [J]. Statistics and Computing, 2023, 33
  • [10] Compositional data analysis and zeros in micro data
    Fry, JM
    Fry, TRL
    McLaren, KR
    [J]. APPLIED ECONOMICS, 2000, 32 (08) : 953 - 959