Line Transversals of Balls and Smallest Enclosing Cylinders in Three Dimensions

被引:0
|
作者
P. K. Agarwal
B. Aronov
M. Sharir
机构
[1] Department of Computer Science,
[2] Box 90129,undefined
[3] Duke University,undefined
[4] Durham,undefined
[5] NC 27708-0129,undefined
[6] USA pankaj@cs.duke.edu ,undefined
[7] Department of Computer and Information Science,undefined
[8] Polytechnic University,undefined
[9] Brooklyn,undefined
[10] NY 11201,undefined
[11] USA aronov@ziggy.poly.edu ,undefined
[12] School of Mathematical Sciences,undefined
[13] Tel Aviv University,undefined
[14] Tel Aviv 69978,undefined
[15] Israel sharir@math.tau.ac.il and Courant Institute of Mathematical Sciences,undefined
[16] New York University,undefined
[17] New York,undefined
[18] NY 10012,undefined
[19] USA,undefined
来源
关键词
Approximation Algorithm; Line Transversal; Infinite Cylinder; Small Enclose; Enclose Cylinder;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a near-cubic upper bound on the complexity of the space of line transversals of a collection of n balls in three dimensions, and show that the bound is almost tight, in the worst case. We apply this bound to obtain a near-cubic algorithm for computing a smallest infinite cylinder enclosing a given set of points or balls in 3-space. We also present an approximation algorithm for computing a smallest enclosing cylinder.
引用
收藏
页码:373 / 388
页数:15
相关论文
共 50 条
  • [1] Line transversals of balls and smallest enclosing cylinders in three dimensions
    Agarwal, PK
    Aronov, B
    Sharir, M
    [J]. PROCEEDINGS OF THE EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1997, : 483 - 492
  • [2] Line transversals of balls and smallest enclosing cylinders in three dimensions
    Agarwal, PK
    Aronov, B
    Sharir, M
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 21 (03) : 373 - 388
  • [3] ON THE SMALLEST ENCLOSING BALLS
    Cheng, Daizhan
    Hu, Xiaoming
    Martin, Clyde
    [J]. COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2006, 6 (02) : 137 - 160
  • [4] Fast and Robust Approximation of Smallest Enclosing Balls in Arbitrary Dimensions
    Larsson, Thomas
    Kallberg, Linus
    [J]. COMPUTER GRAPHICS FORUM, 2013, 32 (05) : 93 - 101
  • [5] Smallest Enclosing Cylinders
    E. Schömer
    J. Sellen
    M. Teichmann
    [J]. Algorithmica, 2000, 27 : 170 - 186
  • [6] Smallest enclosing cylinders
    Schömer, E
    Sellen, J
    Teichmann, M
    Yap, C
    [J]. ALGORITHMICA, 2000, 27 (02) : 170 - 186
  • [7] Approximating smallest enclosing balls
    Nielsen, F
    Nock, R
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 3, 2004, 3045 : 147 - 157
  • [8] SMALLEST ENCLOSING DISKS (BALLS AND ELLIPSOIDS)
    WELZL, E
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1991, 555 : 359 - 370
  • [9] Fast and robust smallest enclosing balls
    Gärtner, B
    [J]. ALGORITHMS - ESA'99, 1999, 1643 : 325 - 338
  • [10] Line transversals to disjoint balls
    Borcea, Ciprian
    Goaoc, Xavier
    Petitjean, Sylvain
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 39 (1-3) : 158 - 173