Existence and multiplicity of solutions for second order periodic systems with the p-Laplacian and a nonsmooth potential

被引:0
|
作者
Leszek Gasiński
Nikolaos S. Papageorgiou
机构
[1] Jagiellonian University,Institute of Computer Science
[2] National Technical University,Department of Mathematics
来源
关键词
-Laplacian; Periodic system; Reduction method; Second deformation lemma; Locally Lipschitz potential; Local linking; 34C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study nonlinear periodic systems driven by the ordinary p-Laplacian with a nonsmooth potential. We prove an existence theorem using a nonsmooth variant of the reduction method. We also prove two multiplicity results. The first is for scalar problems and uses the nonsmooth second deformation lemma. The second is for systems and it is based on the nonsmooth local linking theorem.
引用
收藏
页码:121 / 150
页数:29
相关论文
共 50 条
  • [1] Existence and multiplicity of solutions for second order periodic systems with the p-Laplacian and a nonsmooth potential
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2009, 158 (02): : 121 - 150
  • [2] Periodic Solutions for Second Order Equations with the Scalar p-Laplacian and Nonsmooth Potential
    Papageorgiou, Nikolaos S.
    Yannakakis, Nikolaos
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2004, 47 (01): : 107 - 117
  • [3] Existence and multiplicity of periodic solutions for the ordinary p-Laplacian systems
    Liao K.
    Tang C.-L.
    [J]. Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 395 - 406
  • [4] Existence of Periodic Solutions for Second-Order Ordinary p-Laplacian Systems
    Wang, Shaomin
    Yang, Cunji
    Cha, Guozhi
    [J]. MATHEMATICS, 2024, 12 (08)
  • [5] Existence of periodic solutions for a class of second-order p-Laplacian systems
    Lv, Xiang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 515 - 519
  • [6] Existence and subharmonicity of solutions for nonsmooth p-Laplacian systems
    Ning, Yan
    Lu, Daowei
    Mao, Anmin
    [J]. AIMS MATHEMATICS, 2021, 6 (10): : 10947 - 10963
  • [7] Existence and multiplicity of periodic solutions for some second order differential systems with p(t)-Laplacian
    Zhang, Liang
    Tang, X. H.
    [J]. MATHEMATICA SLOVACA, 2013, 63 (06) : 1269 - 1290
  • [8] Existence and Multiplicity of Periodic Solutions to Fractional p-Laplacian Equations
    Li, Lin
    Tersian, Stepan
    [J]. DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATIONS, 2018, 230 : 495 - 507
  • [9] Existence of periodic solutions of second order nonlinear p-Laplacian difference equations
    Liu, X.
    Shi, H. P.
    Zhang, Y. B.
    [J]. ACTA MATHEMATICA HUNGARICA, 2011, 133 (1-2) : 148 - 165
  • [10] Existence of periodic solutions of second order nonlinear p-Laplacian difference equations
    X. Liu
    H. P. Shi
    Y. B. Zhang
    [J]. Acta Mathematica Hungarica, 2011, 133 : 148 - 165