Neuro-fuzzy prediction of uricase production

被引:0
|
作者
S. Vassileva
B. Tzvetkova
C. Katranoushkova
L. Losseva
机构
[1] Institute of Control and Systems Research – BAS,
[2] Acad. G. Bonchev str.,undefined
[3] bl. 2,undefined
[4] P.O. Box 79,undefined
[5] 1113 Sofia,undefined
[6] Bulgaria,undefined
[7] Institute of Microbiology – BAS,undefined
[8] Acad. G. Bonchev str.,undefined
[9] bl. 26,undefined
[10] 1113 Sofia,undefined
[11] Bulgaria,undefined
来源
Bioprocess Engineering | 2000年 / 22卷
关键词
Uric Acid; Artificial Neural Network; Candida; Fuzzy Model; Biotechnological Process;
D O I
暂无
中图分类号
学科分类号
摘要
Recent biotechnology requires implementation of new modelling methods based on knowledge principles and learning structures, comprised in fuzzy knowledge-based systems (FKBS), neural networks (NN) and different hybrid methods. The intelligent modelling approaches solve sufficiently a very important problem – processing of scarce, uncertainty and incomplete numerical and linguistic information about multivariate non-linear and non-stationary systems as well as biotechnological processes. The paper deals with prediction of an enzyme oxidizing uric acid to alantoin – the uricase, produced by Candida utilis 90-12 employing neuro-fuzzy knowledge-based approach. The implemented predictive technique exploits the fact that the fuzzy model can be seen as a network structure, similar to artificial NN, which on computational level assure a high model accuracy. The predictors implemented are four different by nature variables. The developed predictive model shows that best predictors of uricase production are biomass and limiting substrate concentrations.
引用
收藏
页码:363 / 367
页数:4
相关论文
共 50 条
  • [1] Neuro-fuzzy prediction of uricase production
    Vassileva, S
    Tzvetkova, B
    Katranoushkova, C
    Losseva, L
    [J]. BIOPROCESS ENGINEERING, 2000, 22 (04): : 363 - 367
  • [2] On Neuro-Fuzzy Prediction in MATLAB
    Pashchenko, F. F.
    Pashchenko, A. F.
    Durgaryan, I. S.
    Kudinov, Y. I.
    Kelina, A. Y.
    Le Van Dinh
    [J]. PROCEEDINGS OF THE 2015 10TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, 2015, : 1538 - 1541
  • [3] Financial prediction with neuro-fuzzy systems
    Pokropinska, Agata
    Scherer, Rafal
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2008, PROCEEDINGS, 2008, 5097 : 1120 - +
  • [4] Interval Regression With Neuro-Fuzzy and Madaline Architecture for Prediction of Rice Production
    Setyaningsih, Fatma Agus
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON TECHNOLOGY AND VOCATIONAL TEACHERS (ICTVT 2017), 2017, 102 : 35 - 40
  • [5] Neuro-fuzzy modelling of production process
    Pislaru, M.
    Schreiner, C.
    Trandabat, A.
    [J]. Management of Technological Changes, Book 1, 2003, : 129 - 133
  • [6] Refinement of fuzzy production rules by neuro-fuzzy networks
    Tsang, ECC
    Qiu, SS
    Yeung, DS
    [J]. SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 200 - 205
  • [7] A neuro-fuzzy system for patch load prediction
    Fonseca, E. T.
    Vellasco, P. C. G. da S.
    Vellasco, M. M. B. R.
    de Andrade, S. A. L.
    [J]. Proceedings of The Seventh International Conference on the Application of Artificial Intelligence to Civil and Structural Engineering, 2003, : 113 - 114
  • [8] A Neuro-Fuzzy Classifier for Website Quality Prediction
    Malhotra, Ruchika
    Sharma, Anjali
    [J]. 2013 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2013, : 1274 - 1279
  • [9] Deriving prediction intervals for neuro-fuzzy networks
    Mencar, C
    Castellano, G
    Fanelli, AM
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (7-8) : 719 - 726
  • [10] A neuro-fuzzy system for ash property prediction
    Castellano, G
    Castiello, C
    Fanelli, AM
    Giovannini, M
    [J]. COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2002, : 175 - 180