The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree

被引:0
|
作者
Vít Jelínek
Eva Jelínková
Jan Kratochvíl
Bernard Lidický
Marek Tesař
Tomáš Vyskočil
机构
[1] Charles University,Department of Applied Mathematics
[2] Charles University,Institute for Theoretical Computer Science
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Graph drawing; Planar graphs; Slopes; Planar slope number; 68R10; 05C10; 05C62;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that every planar graph has a planar embedding where edges are represented by non-crossing straight-line segments. We study the planar slope number, i.e., the minimum number of distinct edge-slopes in such a drawing of a planar graph with maximum degree Δ. We show that the planar slope number of every planar partial 3-tree and also every plane partial 3-tree is at most O(Δ5). In particular, we answer the question of Dujmović et al. (Comput Geom 38(3):194–212, 2007) whether there is a function f such that plane maximal outerplanar graphs can be drawn using at most f(Δ) slopes.
引用
收藏
页码:981 / 1005
页数:24
相关论文
共 50 条
  • [1] The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree
    Jelinek, Vit
    Jelinkova, Eva
    Kratochvil, Jan
    Lidicky, Bernard
    Tesar, Marek
    Vyskocil, Tomas
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 981 - 1005
  • [2] The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree
    Jelinek, Vit
    Jelinkova, Eva
    Kratochvil, Jan
    Lidicky, Bernard
    Tesar, Marek
    Vyskocil, Tomas
    GRAPH DRAWING, 2010, 5849 : 304 - 315
  • [3] Queue Layouts of Planar 3-Trees
    Alam, Jawaherul Md.
    Bekos, Michael A.
    Gronemann, Martin
    Kaufmann, Michael
    Pupyrev, Sergey
    ALGORITHMICA, 2020, 82 (09) : 2564 - 2585
  • [4] Queue Layouts of Planar 3-Trees
    Alam, Jawaherul Md
    Bekos, Michael A.
    Gronemann, Martin
    Kaufmann, Michael
    Pupyrev, Sergey
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2018, 2018, 11282 : 213 - 226
  • [5] Queue Layouts of Planar 3-Trees
    Jawaherul Md. Alam
    Michael A. Bekos
    Martin Gronemann
    Michael Kaufmann
    Sergey Pupyrev
    Algorithmica, 2020, 82 : 2564 - 2585
  • [6] Computing the Number and Average Size of Connected Sets in Planar 3-Trees
    Luo, Zuwen
    Xu, Kexiang
    GRAPHS AND COMBINATORICS, 2024, 40 (03)
  • [7] Drawing planar 3-trees with given face areas
    Biedl, Therese
    Velazquez, Lesvia Elena Ruiz
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (03): : 276 - 285
  • [8] Drawing Planar 3-Trees with Given Face-Areas
    Biedl, Therese
    Velazquez, Lesvia Elena Ruiz
    GRAPH DRAWING, 2010, 5849 : 316 - 322
  • [9] Planar Graphs of Bounded Degree Have Bounded Queue Number
    Bekos, Michael
    Foerster, Henry
    Gronemann, Martin
    Mchedlidze, Tamara
    Montecchiani, Fabrizio
    Raftopoulou, Chrysanthi
    Ueckerdt, Torsten
    PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 176 - 184
  • [10] PLANAR GRAPHS OF BOUNDED DEGREE HAVE BOUNDED QUEUE NUMBER
    Bekos, Michael A.
    Foerster, Henry
    Gronemann, Martin
    Mchedlidze, Tamara
    Montecchiani, Fabrizio
    Raftopoulou, Chrysanthi
    Ueckerdt, Torsten
    SIAM JOURNAL ON COMPUTING, 2019, 48 (05) : 1487 - 1502